Skip to main content
Log in

Squeezing of coherent light coupled to a periodically driven two-photon anharmonic oscillator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The electromagnetic field coupled to a  \((2l-1)\) order of nonlinear medium leads to the model of a 2lth anharmonic oscillator, \(l\ge 2\) being an integer. The oscillator with \(l=2\) corresponds to the model of a quartic anharmonic oscillator. In spite of the huge advancement of mathematical physics, we are still in search of exact analytical solution to the lowest order (i.e., \(l=2)\) of anharmonic oscillator. There are few interesting reports where the approximate solutions to the classical and quantum quartic oscillator problems are explored. In the present investigation, the exact analytical solutions of the quartic anharmonic oscillator under rotating wave approximation and hence the two-photon anharmonic oscillator with periodic forcing are exhibited. The solutions corresponding to the quantized two-photon anharmonic oscillator with periodic forcing is used to calculate the second-order variances of the canonically conjugate quadrature in terms of the initial coherent state. The effects of the forcing parameters on the second-order variances and hence on the squeezing effects are examined for various photon numbers and the dimensionless interaction constants. In these studies, we assume that the oscillator is in on-resonance with those of the external forcing term. The off-resonant contribution is found to be small and is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  2. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  3. A.H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981)

    MATH  Google Scholar 

  4. A.H. Nayfeh, D.T. Mook, Non-Linear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  5. R. Bellman, Methods of Nonlinear Analysis, vol. 1 (Academic Press, New York, 1970), p. 198

    Google Scholar 

  6. S.L. Ross, Differential Equations, 3rd edn. (Wiley, New York, 1984)

    MATH  Google Scholar 

  7. C.M. Bender, T.T. Wu, Anharmonic oscillator. Phys. Rev. 184, 1231–1260 (1969)

    MathSciNet  ADS  Google Scholar 

  8. C.M. Bender, T.T. Wu, Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev. D 7, 1620–1636 (1973)

    ADS  Google Scholar 

  9. S. Mandal, An intuitive approach to the higher order solutions for classical and quantum oscillators of quartic anharmonicity. Phys. Lett. A 299, 531–542 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  10. S. Mandal, Quantum oscillator of quartic anharmonicity. J. Phys. A 31, L501–L505 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  11. A. Pathak, S. Mandal, Classical and quantum oscillators of quartic anharmonicities: second-order solution. Phys. Lett. A 286, 261–276 (2001)

    MATH  ADS  Google Scholar 

  12. F.T. Hioe, F.W. Montroll, Quantum theory of anharmonic oscillators I. Energy levels of oscillators with positive quartic anharmonicity. J. Math. Phys. 16, 1945–1955 (1975)

    MathSciNet  ADS  Google Scholar 

  13. E.Z. Liverts, B.V. Madelzweig, F. Tabakin, Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators. J. Math. Phys. 47, 062109 (1975)

    MathSciNet  MATH  ADS  Google Scholar 

  14. C.M. Bender, L.M.A. Bettencourt, Multiple-scale analysis of the quantum anharmonic oscillator. Phys. Rev. Lett. 77, 4114–4117 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  15. F.J. Hernndez, F. Herrera, Multi-level quantum Rabi model for anharmonic vibrational polaritons. J. Chem. Phys. 151, 144116 (2019)

    ADS  Google Scholar 

  16. E.L. Sibert, Modeling vibrational anharmonicity in infrared spectra of high frequency vibrations of polyatomic molecules. J. Chem. Phys. 150, 090901 (2019)

    ADS  Google Scholar 

  17. J. Mackie, T. Chen, A. Candian, T.J. Lee, A.G.G.M. Tielens, Fully anharmonic infrared cascade spectra of polycyclic aromatic hydrocarbons Cameron. J. Chem. Phys. 149, 134302 (2018)

    ADS  Google Scholar 

  18. M. Micciarelli, R. Conte, J. Suarez, M. Ceotto, Anharmonic vibrational eigenfunctions and infrared spectra from semiclassical molecular dynamics. J. Chem. Phys. 149, 064115 (2018)

    ADS  Google Scholar 

  19. G. Mulas, C. Falvo, P. Cassam-Chena, C. Joblin, Anharmonic vibrational spectroscopy of polycyclic aromatic hydrocarbons (PAHs). J. Chem. Phys. 149, 144102 (2018)

    ADS  Google Scholar 

  20. R. Chakrabarti, V. Yogesh, Nonclassicality and decoherence of photon-added squeezed coherent Schrdinger kitten states in a Kerr medium. Phys. A 490, 886–903 (2018)

    MathSciNet  Google Scholar 

  21. F.D. Anno, S. De Siena, F. Illuminati, Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)

    MathSciNet  ADS  Google Scholar 

  22. S. De Siena, A. Di Lisi, F. Illuminati, Exact theory of multiphoton processes and four-photon squeezed states via nonlinear canonical transformations. J. Phys. B At. Mol. Opt. Phys. 35, L291–L297 (2002)

    Google Scholar 

  23. T. Gao, Y. Chen, A quantum anharmonic oscillator model for the stock market. Phys. A Stat. Mech. Appl 468, 307–314 (2017)

    MathSciNet  MATH  Google Scholar 

  24. K. Husimi, Miscellanea in elementary quantum mechanics. II. Prog. Theory Phys. 9, 381–402 (1953)

    MathSciNet  MATH  ADS  Google Scholar 

  25. J.L. Zhang, R.D. Khan, S. Ding, W. Shen, Proc. SPIE 1726, 1992 Shanghai International Symposium on Quantum Optics, (28 October 1992)

  26. L.O. Castanos, A. Zunig-Segundo, The forced harmonic oscillator: coherent states and the RWA. Am. J. Phys. 87, 815–823 (2019)

    ADS  Google Scholar 

  27. D.C. Khandekar, S.V. Lawande, Exact solution of a time-dependent quantal harmonic oscillator with damping and a perturbative force. J. Math. Phys. 20, 1870–1877 (1979)

    MathSciNet  ADS  Google Scholar 

  28. H.-C. Kim, M.-H. Lee, J.-Y. Ji, J.K. Kim, Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator. Phys. Rev. A. 53, 3767–3772 (1996)

    ADS  Google Scholar 

  29. D.K. Bayen, S. Mandal, Classical and quantum description of a periodically driven multi-photon anharmonic oscillator. Opt. Quan. Electron, 51, Art. 388 (2019)

  30. D. K. Bayen, S. Mandal, Quantum dynamics and frequency shift of a periodically Driven multi-photon anharmonic oscillator, in Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Springer Proceedings in Physics, vol. 230, ed. by eds, P.C. Deshmukh, E. Krishnakumar, S. Fritsche, M. Krishnamurthy, S. Majumder, (Springer, Singapore, 2019), pp. 100–105

  31. L.M. Arevalo-Aguilar, H. Moya-Cessa, Solution to the master equation for a quantized cavity mode. Quantum Semiclass. Opt. 10, 671–674 (1998)

    MathSciNet  ADS  Google Scholar 

  32. H. Moya-Cessa, J.A. Roversi, S.M. Dutra, A. Vidiella-Barranco, Recovering coherence from decoherence: a method of quantum-state reconstruction. Phys. Rev. A 60, 4029–4033 (1999)

    ADS  Google Scholar 

  33. H. Moya-Cessa, S.M. Dutra, J.A. Roversi, A. Vidiella-Barranco, Quantum-state reconstruction in the presence of dissipation. J. Mod. Opt. 46, 555–558 (1999)

    ADS  Google Scholar 

  34. S. Gasiorowicz, Quantum Physics (Wiley, New York, 1974), p. 271

    Google Scholar 

  35. L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw Hill Book Company, New York, 1987), p. 176

    Google Scholar 

  36. S. Mandal, Derivation of multi-photon anharmonic oscillator model from its classical counterpart. Opt. Int. J. Light Electron. Opt. 127, 10042–10048 (2016)

    Google Scholar 

  37. J. Larson, H. Moya-Cessa, Self-rotating wave approximation via symmetric ordering of ladder operators. J. Mod. Opt. 54, 1497–1510 (2007)

    MATH  ADS  Google Scholar 

  38. R. Tanas, Squeezed states of an anharmonic oscillator, Coherence and Quantum Optics V, pp. 645, (1984)

  39. V. Buzek, Periodic revivals of squeezing in an anharmonc oscillator model with coherent light. Phys. Lett. A 136, 188–192 (1989)

    MathSciNet  ADS  Google Scholar 

  40. R. Tanas, Squeezing from an anharmonic oscillator model: (\(a^{\dagger })^{2}a^{2}\) versus (\(a^{\dagger }a)^{2}\) interaction Hamiltonians. Phys. Lett. A 141, 217–220 (1989)

    Google Scholar 

  41. R. Tanas, A. Miranowicz, S. Kielich, Squeezing and its graphical representations in the anharmonic oscillator model. Phys. Rev. A 43, 4014–21 (2006)

    ADS  Google Scholar 

  42. J. Bajer, A. Miranowicz, R. Tanas, Limits of noise squeezing in Kerr effect. Czech. J. Phys. 52, 1313–1320 (2002)

    ADS  Google Scholar 

  43. R. Loudon, P.L. Knight, Squeezed light. J. Mod. Opt. 34, 709–759 (1987)

    MathSciNet  MATH  ADS  Google Scholar 

  44. D.F. Walls, Squeezed states of light. Nature 306, 141–146 (1983)

    ADS  Google Scholar 

  45. M. Hillery, Amplitude-squared squeezing of the electromagnetic field. Phys. Rev. A 36, 3796–3802 (1987)

    ADS  Google Scholar 

  46. C.K. Hong, L. Mandel, Higher-order squeezing of a quantum field. Phys. Rev. Lett. 54, 323–325 (1985)

    ADS  Google Scholar 

  47. D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)

    ADS  Google Scholar 

  48. M.V. Satyanarayana, P. Rice, R. Vyas, H.J. Carmichael, Ringing revivals in the interaction of a two-level atom with squeezed light. J. Opt. Soc. Am. B 6, 228–37 (1989)

    ADS  Google Scholar 

  49. H. Moya-Cessa, A. Vidiella-Barranco, Interaction of squeezed light with two-level atoms. J. Mod. Opt. 39, 2481–2499 (1992)

    ADS  Google Scholar 

  50. C.C. Gerry, Sqeezing from k-photon anharmonic oscillators. Phys. Lett. A 124, 237–239 (1987)

    ADS  Google Scholar 

  51. X. Yang, X. Zheng, Squeezing of the square of the field amplitude in the \(k\)-photon anharmonic oscillator. J. Mod. Opt. 36, 607–10 (1989)

    Google Scholar 

  52. R. Tanaś, S. Kielich, Role of the higher optical Kerr nonlinearities in self-squeezing of light. Quantum Opt. 2, 23–33 (1990)

    ADS  Google Scholar 

  53. V. Buzek, I. Jex, Amplitude \(k\)th-power squeezing of \(k\)-photon coherent states. Phys. Rev. A 41, 4079–82 (1990)

    Google Scholar 

  54. A. Joshi, S.V. Lawande, Squeezing and other non-classical features in k-photon anharmonic oscillator in binomial and negative binomial states of the field. Mod. Phys. Lett. B 4, 119–128 (1990)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (DKB) is thankful to the CSIR for awarding him a Senior Research Fellowship (09/202(0062)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayen, D.K., Mandal, S. Squeezing of coherent light coupled to a periodically driven two-photon anharmonic oscillator. Eur. Phys. J. Plus 135, 408 (2020). https://doi.org/10.1140/epjp/s13360-020-00419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00419-3

Navigation