Skip to main content

Advertisement

Log in

Stochastic numerical technique for solving HIV infection model of CD4+ T cells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The intension of the present work is to present the stochastic numerical approach for solving human immunodeficiency virus (HIV) infection model of cluster of differentiation 4 of T-cells, i.e., CD4+ T cells. A reliable integrated intelligent computing framework using layered structure of neural network with different neurons and their optimization with efficacy of global search by genetic algorithms supported with rapid local search methodology of active-set method, i.e., hybrid of GA-ASM, is used for solving the HIV infection model of CD4+ T cells. A comparison between the present results for different neurons-based models and the numerical values of the Runge–Kutta method reveals that the present intelligent computing techniques is trustworthy, convergent and robust. Statistics-based observation on different performance indices further demonstrates the applicability, effectiveness and convergence of the present schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114(1), 81–125 (1993)

    MATH  Google Scholar 

  2. M.Y. Ongun, The Laplace adomian decomposition method for solving a model for HIV infection of CD4+ T cells. Math. Comput. Model. 53(5–6), 597–603 (2011)

    MathSciNet  MATH  Google Scholar 

  3. M. Merdan, Homotopy perturbation method for solving a model for HIV infection of CD4+ T cells (2007)

  4. N. Dogan, Numerical treatment of the model for HIV infection of CD4+ T cells by using multistep Laplace Adomian decomposition method. Discrete Dyn. Nat. Soc. (2012). https://doi.org/10.1155/2012/976352

  5. M. Merdan, A. Gökdoğan, A. Yildirim, On the numerical solution of the model for HIV infection of CD4+ T cells. Comput. Math. Appl. 62(1), 118–123 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Ş. Yüzbaşı, A numerical approach to solve the model for HIV infection of CD4+ T cells. Appl. Math. Model. 36(12), 5876–5890 (2012)

    MathSciNet  MATH  Google Scholar 

  7. V.K. Srivastava, M.K. Awasthi, S. Kumar, Numerical approximation for HIV infection of CD4+ T cells mathematical model. Ain Shams Eng. J. 5(2), 625–629 (2014)

    Google Scholar 

  8. M.A.Z. Raja, Z. Shah, M.A. Manzar, I. Ahmad, M. Awais, D. Baleanu, A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. Eur. Phys. J. Plus 133(7), 254 (2018)

    Google Scholar 

  9. A. Munir et al., Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid. Neural Comput. Appl. 31(3), 751–775 (2019)

    Google Scholar 

  10. N. Yadav, A. Yadav, M. Kumar, J.H. Kim, An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput. Appl. 28(1), 171–178 (2017)

    Google Scholar 

  11. A. Hassan, M. Kamran, A. Illahi, R.M.A. Zahoor, Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system. Eur. Phys. J. Plus 134(3), 122 (2019)

    Google Scholar 

  12. A. Mehmood, A. Zameer, M.A.Z. Raja, Intelligent computing to analyze the dynamics of magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput. 67, 8–28 (2018)

    Google Scholar 

  13. M.A.Z. Raja, F.H. Shah, M. Tariq, I. Ahmad, Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput. Appl. 29(6), 83–109 (2018)

    Google Scholar 

  14. S. Momani, Z.S. Abo-Hammour, O.M. Alsmadi, Solution of inverse kinematics problem using genetic algorithms. Appl. Math. Inf. Sci 10(1), 225 (2016)

    Google Scholar 

  15. J.C. Schaff, F. Gao, Y. Li, I.L. Novak, B.M. Slepchenko, Numerical approach to spatial deterministic-stochastic models arising in cell biology. PLoS Comput. Biol. 12(12), e1005236 (2016)

    ADS  Google Scholar 

  16. M. Umar, Z. Sabir, M.A.Z. Raja, Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)

    Google Scholar 

  17. F. Pelletier, C. Masson, A. Tahan, Wind turbine power curve modelling using artificial neural network. Renew. Energy 89, 207–214 (2016)

    Google Scholar 

  18. M.A.Z. Raja, J.A. Khan, T. Haroon, Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiwan Inst. Chem. Eng. 48, 26–39 (2015)

    Google Scholar 

  19. S. Effati, M. Pakdaman, Artificial neural network approach for solving fuzzy differential equations. Inf. Sci. 180(8), 1434–1457 (2010)

    MathSciNet  MATH  Google Scholar 

  20. C. Soize, Stochastic models of uncertainties in computational structural dynamics and structural acoustics, in Nondeterministic Mechanics, ed. by I. Elishakoff, C. Soize (Springer, Vienna, 2012), pp. 61–113

    MATH  Google Scholar 

  21. Z. Sabir, M.A. Manzar, M.A.Z. Raja, M. Sheraz, A.M. Wazwaz, Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 65, 152–169 (2018)

    Google Scholar 

  22. M.A.Z. Raja, U. Farooq, N.I. Chaudhary, A.M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl. Soft Comput. 38, 561–586 (2016)

    Google Scholar 

  23. M.A.Z. Raja, M. Umar, Z. Sabir, J.A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 133(9), 364 (2018)

    Google Scholar 

  24. I. Ahmad et al., Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur. Phys. J. Plus 133(5), 184 (2018)

    Google Scholar 

  25. M.A.Z. Raja, J. Mehmood, Z. Sabir, A.K. Nasab, M.A. Manzar, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl. 31(3), 793–812 (2019)

    Google Scholar 

  26. A. Mehmood, A. Zameer, M.A.Z. Raja, R. Bibi, N.I. Chaudhary, M.S. Aslam, Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving average systems. Neural Comput. Appl. 31(10), 5819–5842 (2019)

    Google Scholar 

  27. Z. Zhang, T.A. El-Moselhy, I.M. Elfadel, L. Daniel, Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(10), 1533–1545 (2013)

    Google Scholar 

  28. A. Zameer et al., Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134, 361–372 (2017)

    Google Scholar 

  29. A.V. Azad, N.V. Azad, Application of nanofluids for the optimal design of shell and tube heat exchangers using genetic algorithm. Case Stud. Therm. Eng. 8, 198–206 (2016)

    Google Scholar 

  30. G.R. Ruiz, C.F. Bandera, T.G.A. Temes, A.S.O. Gutierrez, Genetic algorithm for building envelope calibration. Appl. Energy 168, 691–705 (2016)

    Google Scholar 

  31. S. Karakatič, V. Podgorelec, A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl. Soft Comput. 27, 519–532 (2015)

    Google Scholar 

  32. M.A.Z. Raja, A.A. Shah, A. Mehmood, N.I. Chaudhary, M.S. Aslam, Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput. Appl. 29(12), 1455–1474 (2018)

    Google Scholar 

  33. W. Yu, B. Li, H. Jia, M. Zhang, D. Wang, Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy Build. 88, 135–143 (2015)

    Google Scholar 

  34. P.C. Mishra, A.K. Giri, Prediction of biosorption capacity using artificial neural network modeling and genetic algorithm: prediction of biosorption capacity, in Handbook of Research on Manufacturing Process Modeling and Optimization Strategies, ed. by R. Das, M. Pradhan (IGI Global, Hershey, 2017), pp. 276–290

    Google Scholar 

  35. J. Tang, G. Zhang, Y. Wang, H. Wang, F. Liu, A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation. Transp. Res. Part C Emerg. Technol. 51, 29–40 (2015)

    Google Scholar 

  36. R. Sridhar, M. Chandrasekaran, C. Sriramya, T. Page, Optimization of heterogeneous Bin packing using adaptive genetic algorithm. in IOP Conference Series: Materials Science and Engineering, vol. 183, no. 1 (IOP Publishing, 2017), p. 012026

  37. S.G. Ahmad, C.S. Liew, E.U. Munir, T.F. Ang, S.U. Khan, A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems. J. Parallel Distrib. Comput. 87, 80–90 (2016)

    Google Scholar 

  38. M. Cavallone, A. Flacco, V. Malka, Shaping of laser-accelerated proton beam for radiobiology applications via genetic algorithm. arXiv preprint arXiv:1903.04787 (2019)

  39. R.D.B. Araújo, A.A. Coelho, Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes. Chem. Eng. Res. Des. 117, 265–273 (2017)

    Google Scholar 

  40. A. Mehmood et al., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04573-32

  41. M.A.Z. Raja, F.H. Shah, M.I. Syam, Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput. Appl. 30(12), 3651–3675 (2018)

    Google Scholar 

  42. H. Kim, P. Kim, Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm. Reliab. Eng. Syst. Saf. 159, 153–160 (2017)

    Google Scholar 

  43. R.P.B. Poubel, E.J. De Oliveira, L.A.F. Manso, L.M. Honório, L.W. Oliveira, Tree searching heuristic algorithm for multi-stage transmission planning considering security constraints via genetic algorithm. Electr. Power Syst. Res. 142, 290–297 (2017)

    Google Scholar 

  44. J.W. Deuerlein, O. Piller, S. Elhay, A.R. Simpson, Content-based active-set method for the pressure-dependent model of water distribution systems. J. Water Resour. Plan. Manag. 145(1), 04018082 (2018)

    Google Scholar 

  45. J. Wang, Y. Gao, W. Zhang, Z. Hu, Nonlinear control of turbofan engines: an active set-based method for performance optimization. J. Dyn. Syst. Meas. Control 141(5), 051014 (2019)

    Google Scholar 

  46. M. Barboteu, S. Dumont, A primal-dual active set method for solving multi-rigid-body dynamic contact problems. Math. Mech. Solids 23(3), 489–503 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Y. Li, G. Yuan, Z. Sheng, An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints. PLoS One 13(1), e0189290 (2018)

    Google Scholar 

  48. M. Klaučo, M. Kalúz, M. Kvasnica, Machine learning-based warm starting of active set methods in embedded model predictive control. Eng. Appl. Artif. Intell. 77, 1–8 (2019)

    Google Scholar 

  49. M.A.Z. Raja, K. Asma, M.S. Aslam, Bio-inspired computational heuristics to study models of hiv infection of CD4+ T-cell. Int. J. Biomath. 11(02), 1850019 (2018)

    MathSciNet  MATH  Google Scholar 

  50. K. Parand, Z. Kalantari, M. Delkhosh, Quasilinearization-Lagrangian method to solve the HIV infection model of CD4+ T cells. SeMA J. 75(2), 271–283 (2018)

    MathSciNet  MATH  Google Scholar 

  51. F. Mirzaee, N. Samadyar, On the numerical method for solving a system of nonlinear fractional ordinary differential equations arising in HIV infection of CD4 T cells. Iran. J. Sci. Technol. Trans. A Sci. 43(3), 1127–1138 (2019)

    MathSciNet  Google Scholar 

  52. Ş. Yüzbaşı, An exponential collocation method for the solutions of the HIV infection model of CD4+ T cells. Int. J. Biomath. 9(03), 1650036 (2016)

    MathSciNet  MATH  Google Scholar 

  53. A. Atangana, D. Goufo, E. Franc, Computational analysis of the model describing HIV infection of CD4. BioMed Res. Int. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. G. Guirao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, M., Sabir, Z., Amin, F. et al. Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 135, 403 (2020). https://doi.org/10.1140/epjp/s13360-020-00417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00417-5

Navigation