Skip to main content
Log in

Influence of Cairns–Tsallis distribution on double layers in magnetoplasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Double layers associated with coupled ion-acoustic and drift modes are addressed in an inhomogeneous collision-less electron–ion magnetoplasma with Cairns–Tsallis velocity distribution, in the presence of stationary dust. The formation of double layers and their salient features are investigated by using Sagdeev potential technique. Further the effects of dust concentration, nonthermality and non-extensivity on double layers structure are studied. It is observed that the characteristics of nonlinear structures, i.e., double layers, are significantly modified in the presence of dust and superthermal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. C.W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    ADS  Google Scholar 

  2. Q. Haque, H. Saleem, Phys. Plasmas 10, 3793 (2003)

    ADS  Google Scholar 

  3. A. Mushtaq, R. Saeed, Q. Haque, Phys. Plasmas 18, 042305 (2011)

    ADS  Google Scholar 

  4. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)

    Google Scholar 

  5. D.A. Mendis, M. Rosenberg, Ann. Rev. Astron. Astrophys. 32, 419 (1994)

    ADS  Google Scholar 

  6. A. Piel, A. Melzer, Plasma Phys. Controlled Fusion 44, R1 (2002)

    ADS  Google Scholar 

  7. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)

    ADS  Google Scholar 

  8. P.K. Shukla, The Physics of Dusty Plasmas (World Scientific, Singapore, 1996), pp. 107–21

    Google Scholar 

  9. P.K. Shukla, Phys. Plasmas 8, 1791 (2001)

    ADS  Google Scholar 

  10. C. Thompson, A. Barkan, N. D’Angelo, R.L. Merlino, Phys. Plasmas 4, 2331 (1997)

    ADS  Google Scholar 

  11. Z. Iqbal, P.A. Andreev, Phys. Plasmas 23, 062320 (2016)

    ADS  Google Scholar 

  12. Z. Iqbal, G. Murtaza, Phys. Lett. A 382, 44 (2018)

    MathSciNet  ADS  Google Scholar 

  13. S. Ali, A. Mushtaq, M. Farooq, Chaos Solitons Fractals 112, 66 (2018)

    MathSciNet  ADS  Google Scholar 

  14. M. Farooq, A. Mushtaq, J. Qasim, Contrib. Plasma Phys. 59, 122 (2019)

    Google Scholar 

  15. P.C. Stangeby, J.E. Allen, J. Phys. D 6, 224 (1973)

    ADS  Google Scholar 

  16. I. Langmuir, Phys. Rev. 33, 954 (1929)

    ADS  Google Scholar 

  17. N. Sato, G. Popa, E. Mark, E. Mravlag, R. Schrittwieser, Phys. Fluids 19, 70 (1976)

    ADS  Google Scholar 

  18. W.B. Bridges, A.N. Chesler, A.S. Halsted, J.V. Parker, Proc. IEEE 59, 724 (1971)

    Google Scholar 

  19. A. Mohri, K. Narihara, Y. Tomita, T. Tsuzuki, Z. Kabeya, K. Akaishi, A. Miyahara, Jpn. J. Appl. Phys. 19, L174 (1980)

    ADS  Google Scholar 

  20. H. Alfven, Tellus 10, 104 (1958)

    ADS  Google Scholar 

  21. R.D. Albert, P.J. Lindstrom, Science 170, 1398 (1970)

    ADS  Google Scholar 

  22. F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Phys. Rev. Lett. 38, 292 (1977)

    ADS  Google Scholar 

  23. H. Alfven, P. Carlqvist, Sol. Phys. 1, 220 (1967)

    ADS  Google Scholar 

  24. R. Bharuthram, P.K. Shukla, Planet. Space Sci. 40, 465 (1992)

    ADS  Google Scholar 

  25. S.K. Maharaj, S.R. Pillay, R. Bharuthram, R.V. Reddy, S.V. Singh, G.S. Lakhina, J. Plasma Phys. 72, 43 (2006)

    ADS  Google Scholar 

  26. J.R. Asbridge, S.J. Bame, I.B. Strong, J. Geophys. Res. 73, 5777 (1968)

    ADS  Google Scholar 

  27. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, J. Geophys. Res. 88, 96 (1983)

    ADS  Google Scholar 

  28. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 1025 (2003)

    Google Scholar 

  29. R. Lundin, A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E.M. Dubinin, S.W. Barabash, I. Liede, H. Koskinen, Nat. (Lond.) 341, 609 (1989)

    ADS  Google Scholar 

  30. G. Sarri, M.E. Dieckmann, I. Kourakis, M. Borghesi, Phys. Plasmas 17, 082305 (2010)

    ADS  Google Scholar 

  31. R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    ADS  Google Scholar 

  32. B. Das, P. Chatterjee, Phys. Lett. A 373, 1144 (2009)

    ADS  Google Scholar 

  33. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  34. G. Mandal, K. Roy, P. Chatterjee, Indian J. Phys. 83, 365 (2009)

    ADS  Google Scholar 

  35. M. Tribeche, R. Amour, P.K. Shukla, Phys. Rev. E 85, 037401 (2012)

    ADS  Google Scholar 

  36. R. Amour, M. Tribeche, P.K. Shukla, Astrophys. Space Sci. 338, 287 (2012)

    ADS  Google Scholar 

  37. G. Williams, I. Kourakis, F. Verheest, M.A. Hellberg, Phys. Rev. E 88, 023103 (2013)

    ADS  Google Scholar 

  38. S.A. El-Tantawy, A.M. Wazwaz, R. Schlickeiser, Plasma Phys. Controlled Fusion 57, 125012 (2015)

    ADS  Google Scholar 

  39. S. Guo, L. Mei, Phys. Plasmas 21, 082303 (2014)

    ADS  Google Scholar 

  40. A. Saha, N. Pal, T. Saha, M.K. Ghorui, P. Chatterjee, J. Theor. Appl. Phys. 10, 271 (2016)

    ADS  Google Scholar 

  41. D. Dutta, B. Sahu, Phys. Plasma 23, 062313 (2016)

    ADS  Google Scholar 

  42. A.A. Abid, M.Z. Khan, S.L. Yap, H. Tercas, S. Mahmood, Phys. Plasmas 23, 013706 (2016)

    ADS  Google Scholar 

  43. O. Bouzit, M. Tribeche, A.S. Bains, Phys. Plasmas 22, 084506 (2015)

    ADS  Google Scholar 

  44. Y. Gell, Phys. Rev. A 16, 402 (1977)

    ADS  Google Scholar 

  45. J. Weiland, Collective Modes in Inhomogeneous Plasma (IOP, Bristol, 2000)

    Google Scholar 

  46. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Higher Education Press, Beijing, 2009)

    MATH  Google Scholar 

  47. M. Adnan, S. Mahmood, A. Qamar, Phys. Plasmas 21, 092119 (2014)

    ADS  Google Scholar 

  48. S. Mahmood, S.A. Khan, H. Ur-Rehman, Phys. Plasmas 17, 112312 (2010)

    ADS  Google Scholar 

  49. M. Mehdipoor, T. Mohsenpour, Phys. Plasmas 22, 112110 (2015)

    ADS  Google Scholar 

  50. A. Mushtaq, Phys. Plasmas 15, 082313 (2008)

    ADS  Google Scholar 

  51. Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999)

    ADS  Google Scholar 

  52. Q. Haque, S.A. Shan, Phys. Plasmas 24, 044501 (2017)

    ADS  Google Scholar 

  53. Y. Ghai, N. Kaur, K. Singh, N.S. Saini, Plasma Sci. Technol 20, 074005 (2018)

    ADS  Google Scholar 

  54. S.A. Ema, M. Ferdousi, S. Sultana, A.A. Mamun, Eur. Phys. J. Plus 130, 46 (2015)

    Google Scholar 

  55. E.T. Hanssen, A.G. Emslie, The Physics of Solar Flares (Cambridge University Press, Cambridge, 1988), p. 166

    Google Scholar 

  56. B. Sahu, Phys. Plasmas 17, 122305 (2010)

    ADS  Google Scholar 

  57. S.A. Shan, H. Saleem, Contrib. Plasma Phys. 59, 1–13 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamir, M., Murtaza, G. Influence of Cairns–Tsallis distribution on double layers in magnetoplasma. Eur. Phys. J. Plus 135, 394 (2020). https://doi.org/10.1140/epjp/s13360-020-00391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00391-y

Navigation