Skip to main content
Log in

Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, free vibration analyses of embedded carbon and silica carbide nanotubes lying on an elastic matrix are performed based on Eringen’s nonlocal elasticity theory. These nanotubes are modeled as nanobeam and nanorod. Elastic matrix is considered as Winkler–Pasternak elastic foundation and axial elastic media for beam and rod models, respectively. The vibration formulations of the beam and rod are derived by utilizing Hamilton’s principle. The obtained equations of motions are solved by the method of separation of variables and finite element-based Hermite polynomials for various boundary conditions. The effects of boundary conditions, system modeling, structural sizes such as length, cross-sectional sizes, elastic matrix, mode number, and nonlocal parameters on the natural frequencies of these nanostructures are discussed in detail. Moreover, the availability of size-dependent finite element formulation is investigated in the vibration problem of nanobeams/rods resting on an elastic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Philip Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge, New York, 2011)

  2. Y. Gogotsi, Nanotubes and Nanofibers (CRC Press, Boca Raton, 2006)

    Google Scholar 

  3. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    MATH  Google Scholar 

  4. Y. Kinoshita, M. Murashima, M. Kawachi, N. Ohno, Comput. Mater. Sci. 70, 1 (2013)

    Google Scholar 

  5. S. Iijima, Nature 354, 56 (1991)

    ADS  Google Scholar 

  6. F. Inam, T. Vo, J.P. Jones, X. Lee, J. Compos. Mater. 47, 2321 (2013)

    ADS  Google Scholar 

  7. S.H. Park, P.R. Bandaru, Polymer 51, 5071 (2010)

    Google Scholar 

  8. E.T. Thostenson, T.W. Chou, J. Phys. D Appl. Phys. 36, 573 (2003)

    ADS  Google Scholar 

  9. K.I. Tserpes, P. Papanikos, Compos. Struct. 79, 581 (2007)

    Google Scholar 

  10. B.I. Yakobson, P. Avouris, Carbon Nanotubes 80, 287 (2001)

    ADS  Google Scholar 

  11. B. Kan, J. Ding, G. Cheng, X. Wang, Z. Fan, Z. Ling, Int. J. Surf. Eng. 4, 269 (2010)

    Google Scholar 

  12. L. Latu-Romain, M. Ollivier, Silicon Carbide One-Dimensional Nanostructures (Wiley-ISTE, London, 2015)

    Google Scholar 

  13. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A.N. Andriotis, Phys. Rev. B 69, 115322 (2004)

    ADS  Google Scholar 

  14. B. Baumeier, P. Krüger, J. Pollmann, Phys. Rev. B 76, 085407 (2007)

    ADS  Google Scholar 

  15. X. Wang, K.M. Liew, J. Phys. Chem. C 115, 10388 (2011)

    Google Scholar 

  16. R.Q. Wu, M. Yang, Y.H. Lu, Y.P. Feng, Z.G. Huang, Q.Y. Wu, J. Phys. Chem. C 112, 15985 (2008)

    Google Scholar 

  17. J.X. Zhao, B. Xiao, Y.H. Ding, J. Phys. Chem. C 113, 16736 (2009)

    Google Scholar 

  18. F. Memarian, A. Fereidoon, S. Khodaei, A.H. Mashhadzadeh, M.D. Ganji, Vacuum 139, 93 (2017)

    ADS  Google Scholar 

  19. A.C. Eringen, Int. J. Eng. Sci. 10, 561 (1972)

    Google Scholar 

  20. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    ADS  Google Scholar 

  21. Q. Wang, Y. Shindo, J. Mech. Mater. Struct. 1, 663 (2006)

    Google Scholar 

  22. J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)

    Google Scholar 

  23. J.N. Reddy, S.D. Pang, J. Appl. Phys. 103, 023511 (2008)

    ADS  Google Scholar 

  24. M. Aydogdu, Phys. E 41, 861 (2009)

    Google Scholar 

  25. Ö. Civalek, Ç. Demir, B. Akgöz, Math. Comput. Appl. 15, 57 (2010)

    Google Scholar 

  26. T. Murmu, S. Adhikari, Mech. Res. Commun. 38, 62 (2011)

    Google Scholar 

  27. H.T. Thai, Int. J. Eng. Sci. 52, 56 (2012)

    Google Scholar 

  28. M. Aydogdu, Mech. Res. Commun. 43, 34 (2012)

    Google Scholar 

  29. R. Barretta, S. Ali Faghidian, F. Marotti de Sciarra, Int. J. Eng. Sci. 136, 38 (2019)

    Google Scholar 

  30. M. Gürses, B. Akgöz, Ö. Civalek, Appl. Math. Comput. 219, 3226 (2012)

    MathSciNet  Google Scholar 

  31. R. Barretta, M. Čanadija, F. Marotti de Sciarra, Arch. Appl. Mech. 86, 483 (2016)

    ADS  Google Scholar 

  32. Z. Rahimi, W. Sumelka, X. Yang, Eur. Phys. J. Plus 132, 479 (2017)

    Google Scholar 

  33. M.A. Eltaher, F.F. Mahmoud, A.E. Assie, E.I. Meletis, Appl. Math. Comput. 224, 760 (2013)

    MathSciNet  Google Scholar 

  34. S. Limkatanyu, W. Prachasaree, N. Damrongwiriyanupap, M. Kwon, J. Eng. Math. 89, 163 (2014)

    Google Scholar 

  35. X.J. Xu, M.L. Zheng, X.C. Wang, Int. J. Eng. Sci. 119, 217 (2017)

    Google Scholar 

  36. Ö. Civalek, Ç. Demir, Appl. Math. Model. 35, 2053 (2011)

    MathSciNet  Google Scholar 

  37. T. Murmu, S.C. Pradhan, Phys. E 41, 1232 (2009)

    Google Scholar 

  38. X.F. Li, G.J. Tang, Z.B. Shen, K.Y. Lee, Math. Mech. Solids 22, 1 (2016)

    ADS  Google Scholar 

  39. Ç. Demir, Ö. Civalek, Int. J. Eng. Sci. 121, 14 (2017)

    Google Scholar 

  40. C. Li, S. Li, L. Yao, Z. Zhu, Appl. Math. Model. 39, 4570 (2015)

    MathSciNet  Google Scholar 

  41. M. Arda, M. Aydogdu, Adv. Sci. Technol. Res. J. 9, 28 (2015)

    Google Scholar 

  42. M.Ö. Yayli, J. Vib. Control 24, 1 (2016)

    Google Scholar 

  43. H.M. Numanoglu, B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 130, 33 (2018)

    Google Scholar 

  44. C. Li, L. Yao, W. Chen, S. Li, Int. J. Eng. Sci. 87, 47 (2015)

    Google Scholar 

  45. J. Peddieson, G.R. Buchanan, R.P. McNitt, Int. J. Eng. Sci. 41, 305 (2003)

    Google Scholar 

  46. N. Togun, S.M. Bağdatlı, Math. Comput. Appl. 21, 3 (2016)

    Google Scholar 

  47. Q. Wang, V.K. Varadan, Smart. Mater. Struct. 15, 659 (2006)

    Google Scholar 

  48. H. Zeighampour, Y. Tadi Beni, I. Karimipour, Eur. Phys. J. Plus 132, 503 (2017)

    Google Scholar 

  49. M. Faraji Oskouie, R. Ansari, H. Rouhi, Eur. Phys. J. Plus 133, 336 (2018)

    Google Scholar 

  50. M. Faraji Oskouie, R. Ansari, H. Rouhi, Eur. Phys. J. Plus 134, 527 (2019)

    Google Scholar 

  51. Y. Gao, W. Xiao, H. Zhu, Eur. Phys. J. Plus 134, 345 (2019)

    Google Scholar 

  52. R. Ansari, J. Torabi, A. Norouzzadeh, Eur. Phys. J. Plus 135, 206 (2020)

    Google Scholar 

  53. F. Khosravi, S.A. Hosseini, A. Tounsi, Eur. Phys. J. Plus 135, 183 (2020)

    Google Scholar 

  54. I. Ecsedi, A. Baksa, Mech. Res. Commun. 86, 1 (2017)

    Google Scholar 

  55. N. Challamel, M. Aydogdu, I. Elishakoff, Eur. J. Mech. A. Solids 67, 254 (2018)

    ADS  MathSciNet  Google Scholar 

  56. S. Dastjerdi, B. Akgöz, Int. J. Eng. Sci. 142, 125 (2019)

    Google Scholar 

  57. S. Dastjerdi, B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 149, 103236 (2020)

    Google Scholar 

  58. S.K. Park, X.L. Gao, J. Micromech. Microeng. 16, 2355 (2006)

    ADS  Google Scholar 

  59. H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solids 56, 3379 (2008)

    ADS  MathSciNet  Google Scholar 

  60. B. Akgöz, Ö. Civalek, Compos. Struct. 98, 314 (2013)

    Google Scholar 

  61. B. Akgöz, Ö. Civalek, Compos. Part B Eng. 129, 77 (2017)

    Google Scholar 

  62. M. Shojaejan, Y. Tadi Beni, H. Ataei, Acta Astronaut. 118, 62 (2016)

    ADS  Google Scholar 

  63. S. Kong, S. Zhou, Z. Nie, K. Wang, Int. J. Eng. Sci. 47, 487 (2009)

    Google Scholar 

  64. B. Akgöz, Ö. Civalek, Int. J. Mech. Sci. 81, 88 (2014)

    Google Scholar 

  65. B. Akgöz, Ö. Civalek, Int. J. Mech. Sci. 99, 10 (2015)

    Google Scholar 

  66. B. Akgöz, Ö. Civalek, J. Vib. Control 20, 606 (2014)

    MathSciNet  Google Scholar 

  67. Y. Tadi Beni, I. Karimipour, M. Abadyan, Appl. Math. Model. 39, 2633 (2015)

    MathSciNet  Google Scholar 

  68. B. Akgöz, Ö. Civalek, Acta Mech. 226, 2277 (2015)

    MathSciNet  Google Scholar 

  69. B. Akgöz, Ö. Civalek, Acta Astronaut. 119, 1 (2016)

    ADS  Google Scholar 

  70. N. Satish, S. Narendar, K.B. Raju, Compos. Struct. 180, 568 (2017)

    Google Scholar 

  71. F. Ebrahimi, M. Reza Barati, Eur. Phys. J. Plus 132, 19 (2017)

    Google Scholar 

  72. R. Ansari, V. Mohammadi, M.F. Shojaei, R. Gholami, S. Sahmani, Compos. Part B Eng. 55, 240 (2013)

    Google Scholar 

  73. A. Gangele, A.K. Pandey, Appl. Math. Model. 76, 741 (2019)

    Google Scholar 

  74. U. Gul, M. Aydogdu, Phys. E 93, 345 (2017)

    Google Scholar 

  75. M. Kojic, I. Vlastelica, P. Decuzzi, V.T. Granik, M. Ferrari, Comput. Methods Appl. Mech. Eng. 200, 1446 (2011)

    ADS  Google Scholar 

  76. N. Challamel, Z. Zhang, C.M. Wang, J.N. Reddy, Q. Wang, T. Michelitsch, B. Collet, Arch. Appl. Mech. 84, 1275 (2014)

    ADS  Google Scholar 

  77. R. Barretta, F. Marotti de Sciarra, Int. J. Eng. Sci. 130, 187 (2018)

    Google Scholar 

  78. G. Romano, R. Barretta, M. Diaco, F. Marotti de Sciarra, Int. J. Mech. Sci. 121, 151 (2017)

    Google Scholar 

  79. R. Barretta, A. Caporale, S.A. Faghidian, R. Luciano, F. Marotti de Sciarra, C.M. Medaglia, Compos. Part B Eng. 164, 590 (2019)

    Google Scholar 

  80. R. Barretta, R. Luciano, F. Marotti de Sciarra, G. Ruta, Eur. J. Mech. A Solids 72, 275 (2018)

    ADS  MathSciNet  Google Scholar 

  81. R. Barretta, F. Fabbrocino, R. Luciano, F. Marotti de Sciarra, Phys. E 97, 13 (2018)

    Google Scholar 

  82. M. Faraji Oskouie, R. Ansari, H. Rouhi, Acta Mech. Sinica 34, 871 (2018)

    ADS  MathSciNet  Google Scholar 

  83. R. Barretta, M. Diaco, L. Feo, R. Luciano, F. Marotti de Sciarra, R. Penna, Mech. Res. Commun. 87, 35 (2018)

    Google Scholar 

  84. A.M. Zenkour, Compos. Struct. 185, 821 (2018)

    Google Scholar 

  85. A.M. Zenkour, Eur. Phys. J. Plus 133, 196 (2018)

    Google Scholar 

  86. S.C. Pradhan, Finite Elem. Anal. Des. 50, 8 (2012)

    Google Scholar 

  87. S. Adhikari, T. Murmu, M.A. McCarthy, Finite Elem. Anal. Des. 63, 42 (2013)

    MathSciNet  Google Scholar 

  88. Ç. Demir, Ö. Civalek, Appl. Math. Model. 37, 9355 (2013)

    Google Scholar 

  89. M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Appl. Math. Model. 37, 4787 (2013)

    MathSciNet  Google Scholar 

  90. S. Adhikari, T. Murmu, M.A. McCarthy, Phys. E 59, 33 (2014)

    Google Scholar 

  91. A. Norouzzadeh, R. Ansari, Phys. E 55, 194 (2017)

    Google Scholar 

  92. M. Hemmatnezhad, R. Ansari, J. Theor. Appl. Phys. 7, 6 (2013)

    ADS  Google Scholar 

  93. Ç. Dinçkal, Iran J. Sci. Technol. Trans. Mech. Eng. 40, 43 (2016)

    Google Scholar 

  94. Ç. Demir, Ö. Civalek, Compos. Struct. 168, 882 (2017)

    Google Scholar 

  95. Ö. Civalek, Ç. Demir, Appl. Math. Comput. 289, 335 (2016)

    MathSciNet  Google Scholar 

  96. F. Marotti de Sciarra, Adv. Mech. Eng. 5, 720406 (2013)

    Google Scholar 

  97. F. Marotti de Sciarra, Phys. E 59, 144 (2014)

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Akgöz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, Ö., Uzun, B., Yaylı, M.Ö. et al. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00385-w

Navigation