Skip to main content
Log in

Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations.

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form are derived, by adopting two relevant architecture of integration methods namely the extended sinh-Gordon equation expansion method and extended Jacobi elliptic function methods (EJEF method). The studied model, describes the propagation of optical solitons in nonlinear optical fibers. As a results, various types of traveling wave solutions are obtained including Jacobi elliptic function solutions. For some special cases, when the modulus of m approach 0 or 1 it is gained respectively periodic wave solutions and hyperbolic function solutions. Comparing our results with the well-known results in literature are also reported. Lastly the 3D profile to some of the obtained solutions are also plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Bekir, O. Guner, Bright and dark soliton solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation and generalized Benjamin equation. Pramana-J. Phys 81, 203–214 (2013)

    Article  ADS  Google Scholar 

  2. A. Bekir, Application of the (G’/G)-expansion method for nonlinear evolution equations. 372 (2008)3400-3406

  3. A. Houwe, Z. Hammouch, D. Bienvenue, S. Nestor, G. Betchewe, D. Serge Yamigno, Nonlinear Schrödinger’s equations with cubic nonlinearity: M-derivative soliton solutions by \(\exp (-\Phi ( ))\) -Expansion method. 10.20944/preprints201903.0114.v1

  4. K. Khan, M.A. Akbar, The \(\exp (-\Phi (\xi ))\)-expansion method for finding traveling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 1, 72–83 (2014)

    MATH  Google Scholar 

  5. H. Rezazadeh, J. Manafian, F.S. Khodadad, F. Nazari, Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved \(\tan (\phi (\xi )/2)\)- expansion. Opt. Quant. Electron. 51, 121 (2018)

    Article  Google Scholar 

  6. H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56, 2805–2816 (2018)

    Article  Google Scholar 

  7. S. Nestor, M. Justin, G. Betchewe, D. Serge. Yamigno, T. Crépin. Koffane, New Jacobi elliptic solutions and other solutions with quadratic-cubic nonlinearity using two mathematical methods. Asian-Eur. J. Math. https://doi.org/10.1142/S1793557120500436

  8. M. Boudoue-Hubert, S. Nestor, Douvagai, G. Betchewe, A. Biswas, S. Khan, M. Belic, Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. Optik 179, 1009–1018 (2018)

    Article  Google Scholar 

  9. M. Arshad, A.R. Seadawy, L. Dian-Chen, A. Asghar, Dispersive solitary wave solutions of strain wave dynamical model and its stability. Commun. Theor. Phys 69, 676 (2018)

    Article  ADS  Google Scholar 

  10. M. Arshad, A.R. Seadawy, L. Dian-Chen, Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability. Eur. Phys. J. Plus 132, 371 (2017)

    Article  Google Scholar 

  11. M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, Optical solitons and modulation instability analysis of an integrable model of (2+ 1)-dimensional Heisenberg ferromagnetic spin chain equation. Superlattices Microstruct. 112, 628–638 (2017)

    Article  ADS  Google Scholar 

  12. A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons.(CRC Press, 2006)

  13. Z.Y. Yan, Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres. Chaos Solitions Fract. 16, 759–766 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. G.P. Agrawal, M.J. Potasek, Nonlinear pulse distortion in single mode optical fibers at the zero-dispersion wavelength. Phys. Rev. A 33(3), 1765–1776 (1986)

    Article  ADS  Google Scholar 

  15. A. Houwe, M. Boudoue Hubert, S. Nestor, D. Jerome, M. Justin, G. Betchewe, S.Y. Doka, T.C. Kofane, S. Khan, A. Biswasg, M. Ekicii, S. Adesanya, S.P. Moshokoah, M. Belick, Optical solitons for higher-order nonlinear Schrödinger equation with three exotic integration architectures. Optik 179, 861–866 (2018)

  16. M. Inc, A. Yusuf, A.I. Aliyu, D. Baleanu, Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrödinger equation. Superlattices Microstruct. 112, 164–179 (2017)

    Article  ADS  Google Scholar 

  17. M. Inc, A.I. Aliyu, A. Yusuf, Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion. Mod. Phys. Lett. B 31, 1750163 (2017)

    Article  ADS  Google Scholar 

  18. A.R. Seadawy, D. Kumar, K. Hosseini, A. Kumar Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Eur. Phys. J. Plus 133, 182 (2018)

    Article  Google Scholar 

  19. W.W. Li, Y. Tian, Z. Zhang, F-expansion method and its application for finding new exact solutions to the sine-Gordon and sinh-Gordon equations. Appl. Math. Comput. 219, 1135–1143 (2012)

    MathSciNet  MATH  Google Scholar 

  20. E. Fan, J. Zhang, Applications of the jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.Q. Dai, J.F. Zhang, Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solitons Fract. 27, 1042–1049 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Quiroga-Teixeiro, H. Michinel, Stable azimuthal stationary state in quintic nonlinear optical media. J. Opt. Soc. Amer. B 14, 2004–2009 (1997)

    Article  ADS  Google Scholar 

  23. J.A. Giannini, R.I. Joseph, The propagation of bright and dark solitons in lossy optical fibers. IEEE J. Quant. Electron. 26, 2109 (1990)

    Article  ADS  Google Scholar 

  24. J.P. Hamaide, P. Emplit, M. Haelterman, The Dark-soliton jitter in amplified optical transmission systems. Opt. Lett. 16, 1578 (1991)

    Article  ADS  Google Scholar 

  25. Y.S. Kivshar, M. Haelterman, P. Emplit, J.P. Hamaide, The Gordon-Haus effect on dark solitons. Opt. Lett. 19, 19–21 (1994)

    Article  ADS  Google Scholar 

  26. G. Akram, N. Mahak, Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus 133, 212 (2018)

    Article  Google Scholar 

  27. S. Subhaschandra Salam, Soliton solutions of perturbed nonlinear Schrödinger equation with Kerr law nonlinearity via the modified simple equation method and the subordinary differential equation method. Turk. J. Phys 42, 425–432 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referee for his comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestor, S., Betchewe, G., Inc, M. et al. Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations.. Eur. Phys. J. Plus 135, 380 (2020). https://doi.org/10.1140/epjp/s13360-020-00384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00384-x

Navigation