Skip to main content
Log in

Dissipative quantum backflow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 14 August 2020

This article has been updated

Abstract

Dissipative backflow is studied in the context of open quantum systems. This theoretical analysis is carried out within two frameworks, the effective time-dependent Hamiltonian due to Caldirola–Kanai (CK) and the Caldeira–Leggett (CL) one where a master equation is used to describe the reduced density matrix in the presence of dissipation and temperature of the environment. Two examples are considered: the free evolution of one and two Gaussian wave packets and the time evolution under a constant field. Backflow is shown to be reduced with dissipation and temperature but never suppressed. Interestingly enough, quantum backflow is observed when considering both one and two Gaussian wave packets within the CL context. Surprisingly, in both cases, the backflow effect seems to be persistent at long times. Furthermore, the constant force \( \mathrm{mg}\ge 0 \) behaves against backflow. However, the classical limit of this quantum effect within the context of the classical Schrödinger equation is shown to be present. Backflow is also analyzed as an eigenvalue problem in the CK framework. In the free propagation case, eigenvalues are independent on mass, Planck constant, friction and its duration, but, in the constant force case, eigenvalues depend on a factor which itself is a combination of all of them as well as the force constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 14 August 2020

    Within the context of the CL master equation, when a quantum system is initially described by the pure state given by Eq. (15) in the momentum space, the probability for obtaining a negative value in a measurement of momentum at time t, when no external interaction potential is present, is given

References

  1. G.R. Allcock, Ann. Phys. 53, 253 (1969)

    Article  ADS  Google Scholar 

  2. G.R. Allcock, ibid 53, 286 (1969)

    Google Scholar 

  3. G.R. Allcock, ibid 53, 311 (1969)

    Google Scholar 

  4. A.J. Bracken, G.F. Melloy, J. Phys. A: Math. Gen. 27, 2197 (1994)

    Article  ADS  Google Scholar 

  5. A.J. Bracken, G.F. Melloy, Ann. Phys. (Leipzig) 7, 726 (1998)

    Article  ADS  Google Scholar 

  6. M. Penz, G. Grübl, S. Kreidl, R. Verch, J. Phys. A 39, 423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.V. Berry, S. Popescu, J. Phys. A:Math. Theor. 39, 6965 (2006)

    Article  ADS  Google Scholar 

  9. M.V. Berry, J. Phys. A: Math. Theor. 43, 415302 (2010)

    Article  Google Scholar 

  10. J.M. Yearsley, J.J. Halliwell, R. Hartshorn, A. Whitby, Phys. Rev. A 86, 042116 (2012)

    Article  ADS  Google Scholar 

  11. J.M. Yearsley, J.J. Halliwell, J. Phys.: Conference Serie 442, 012055 (2013)

  12. F. Albarelli, T. Guaita, M.G.A. Paris, Int. J. Quantum Inf. 14, 1650032 (2016)

    Article  Google Scholar 

  13. A. Goussev, Phys. Rev. A 99, 043626 (2019)

    Article  ADS  Google Scholar 

  14. J.M. Yearsley, Phys. Rev. A 82, 012116 (2010)

    Article  ADS  Google Scholar 

  15. P. Caldirola, Nuovo Cimento 18, 393 (1941)

    Article  Google Scholar 

  16. E. Kanai, Prog. Theor. Phys. 3, 440 (1948)

    Article  ADS  Google Scholar 

  17. A.O. Caldeira, A.J. Leggett, Phys. A 121, 587 (1983)

    Article  MathSciNet  Google Scholar 

  18. A.O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  19. S.V. Mousavi, S. Miret-Artés, Ann. Phys. 393, 76 (2018)

    Article  ADS  Google Scholar 

  20. A.S. Sanz, R. Martínez-Casado, H.C. Peñate-Rodriguez, G. Rojas-Lorenzo, S. Miret-Artés, Ann. Phys. 347, 1 (2014)

    Article  ADS  Google Scholar 

  21. C.D. Richardson, P. Schlagheck, J. Martin, N. Vandewalle, T. Bastin, Phys. Rev. A 89, 032118 (2014)

    Article  ADS  Google Scholar 

  22. S.V. Mousavi, S. Miret-Artés, J. Phys. Commun. 2, 035029 (2018)

    Article  Google Scholar 

  23. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 135, 83 (2020)

    Article  Google Scholar 

  24. A. Venugopalan, Phys. Rev. A 50, 2742 (1994)

    Article  ADS  Google Scholar 

  25. A. Venugopalan, D. Kumar, R. Ghosh, Phys. A 220, 563 (1995)

    Article  Google Scholar 

  26. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 134, 311 (2019)

    Article  Google Scholar 

  27. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 134, 431 (2019)

    Article  Google Scholar 

  28. I. Percival, Quantum State Diffusion (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  29. H.-P. Bauer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

Download references

Acknowledgements

SVM acknowledges support from the University of Qom and SMA support from the Ministerio de Ciencia, Innovación y Universidades (Spain) under the Project FIS2017-83473-C2-1-P. We would like to thank the referees for providing us very important and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.V., Miret-Artés, S. Dissipative quantum backflow. Eur. Phys. J. Plus 135, 324 (2020). https://doi.org/10.1140/epjp/s13360-020-00336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00336-5

Navigation