Skip to main content
Log in

QES solutions of a two-dimensional system with quadratic nonlinearities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider a one-parameter family of a PT symmetric two-dimensional system with quadratic nonlinearities. Such systems are shown to perform periodic oscillations due to existing centers. We describe this system by constructing a non-Hermitian Hamiltonian of a particle with position-dependent mass. We further construct a canonical transformation which maps this position-dependent mass system to a QES system. First few QES levels are calculated explicitly by using Bender–Dunne polynomial method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In two dimension parity transformation can be defined in three alternative ways \((x,y)\rightarrow (x,-y),(x,y)\rightarrow (-x,y) \ \ \text{ and } (x,y)\rightarrow (y,x) \).

References

  1. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    ADS  MathSciNet  Google Scholar 

  2. C.M. Bender, Rep. Progr. Phys. 70, 947 (2007). (and references therein)

    ADS  MathSciNet  Google Scholar 

  3. A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010). (and references therein)

    Google Scholar 

  4. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  5. C.M. Bender, PT Symmetry in Quantum and classical Physics (World Scientific, Singapore, 2019)

    Google Scholar 

  6. M. Znojil, H.B. Geyer, Phys. Lett. B 640(1–2), 52 (2006)

    ADS  MathSciNet  Google Scholar 

  7. P. Siegl, D. Krejcirk, Phys. Rev. D 86(12), 121,702 (2012)

    Google Scholar 

  8. O.A. Castro-Alvaredo, A. Fring, J. Phys. A: Math. Theor. 42(46), 465,211 (2009)

    Google Scholar 

  9. D. Musumbu, H. Geyer, W. Heiss, J. Phys A: Math. Theor. 40(2), F75 (2006)

    Google Scholar 

  10. A. Mostafazadeh, J. Phys. A: Math. Gen. 39(32), 10,171 (2006)

    Google Scholar 

  11. P.D. Mannheim, Phys. Rev. D 99(4), 045006 (2019)

    ADS  MathSciNet  Google Scholar 

  12. J. Alexandre, J. Ellis, P. Millington, D. Seynaeve, Phys. Rev. D 101, 035008 (2020)

    ADS  Google Scholar 

  13. J. Alexandre, P. Millington, D. Seynaeve, Phys. Rev. D 96(6), 065027 (2017)

    ADS  MathSciNet  Google Scholar 

  14. J. Alexandre, C.M. Bender, P. Millington, JHEP 2015(11), 111 (2015)

    ADS  Google Scholar 

  15. A. Fring, T. Taira, arXiv:1906.05738

  16. B.P. Mandal, B.K. Mourya, K. Ali, A. Ghatak, Ann. Phys. 363, 185–193 (2015)

    ADS  Google Scholar 

  17. H. Rawal, B.P. Mandal, Nucl. Phys. B 946, 114699 (2019)

    Google Scholar 

  18. A. Fring, M.H. Moussa, Phys. Rev. A 94(4), 042,128 (2016)

    Google Scholar 

  19. A. Mostafazadeh, Phys. Rev. D 98(4), 046,022 (2018)

    MathSciNet  Google Scholar 

  20. C.M. Bender, D.J. Weir, J. Phys. A: Math. Theor. 45, 425303 (2012)

    ADS  Google Scholar 

  21. G. Levai, J. Phys. A 41, 244015 (2008)

    ADS  MathSciNet  Google Scholar 

  22. C.M. Bender, G.V. Dunne, P.N. Meisinger, M. Simsek, Phys. Lett. A 281, 311–316 (2001)

    ADS  MathSciNet  Google Scholar 

  23. B.P. Mandal, B.K. Mourya, R.K. Yadav, Phys. Lett. A 377, 1043 (2013)

    ADS  MathSciNet  Google Scholar 

  24. A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009)

    ADS  Google Scholar 

  25. A. Mostafazadeh, M. Sarisaman, Phys. Lett. A 375, 3387 (2011)

    ADS  Google Scholar 

  26. A. Ghatak, B.K. Mourya, R.D.R. Mandal, B.P. Mandal, Int. J. Theor. Phys. 54, 3945 (2015)

    Google Scholar 

  27. Y.D. Chong, Li Ge, Hui Cao, A.D. Stone, Phys. Rev. Lett. 105, 053901 (2010)

    ADS  Google Scholar 

  28. C.F. Gmachl, Nature 467, 37 (2010)

    ADS  Google Scholar 

  29. S. Longhi, Physics 3, 61 (2010)

    Google Scholar 

  30. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Science 331, 889 (2011)

    ADS  Google Scholar 

  31. Y.D. Chong, A.D. Stone, Phys. Rev. Lett. 107, 163901 (2011)

    ADS  Google Scholar 

  32. A. Mostafazadeh, M. Sarisaman, Proc. R. Soc. A 468, 3224 (2012)

    ADS  Google Scholar 

  33. S. Longhi, Phys. Rev. A 83, 055804 (2011)

    ADS  Google Scholar 

  34. S. Dutta-Gupta, R. Deshmukh, A.Venu Gopal, O.J.F. Martin, S.Dutta Gupta, Opt. Lett. 37, 4452 (2012)

    ADS  Google Scholar 

  35. S. Longhi, L. Feng, Opt. Lett. 39, 5026 (2014)

    ADS  Google Scholar 

  36. M.V. Berry, D.H.J.O. Dell, J. Phys. A 33, 2093 (1998)

    ADS  Google Scholar 

  37. M. Liertzer, L. Ge, A. Cerjan, A.D. Stone, H.E. Tureci, S. Rotter, Phys. Rev. Lett. 108, 173901 (2012)

    ADS  Google Scholar 

  38. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    ADS  Google Scholar 

  39. C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Google Scholar 

  40. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632 (2007)

    ADS  Google Scholar 

  41. A. Guo et al., Phys. Rev. Lett. 103, 093902 (2009)

    ADS  Google Scholar 

  42. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89(27), 270401 (2002)

    MathSciNet  Google Scholar 

  43. M. Znojil, Phy. Rev. D 78(8), 085003 (2008)

    ADS  MathSciNet  Google Scholar 

  44. C.F.Morisson de Faria, A. Fring, J. Phys. A: Math. Gen. 39(29), 9269 (2006)

    ADS  Google Scholar 

  45. F. Bagarello, A. Fring, Phys. Rev. A 88, 042119 (2013)

    ADS  Google Scholar 

  46. A. Fring, M. Smith, J. Phys. A: Math. Theor. 45, 085203 (2012)

    ADS  Google Scholar 

  47. A. Fring, J. Phys. A 49, 4215 (2007)

    ADS  Google Scholar 

  48. B.K. Mourya, B.P. Mandal, Singer Proc. Phys. 184, 319 (2016)

    Google Scholar 

  49. A. Mostafazadeh, Phys. Lett. B 650(2–3), 208 (2007)

    ADS  MathSciNet  Google Scholar 

  50. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    ADS  MathSciNet  Google Scholar 

  51. C.M. Bender, S. Boettcher, H.F. Jones, V.M. Savage, J. Phys. A 32, 6771 (1999)

    ADS  MathSciNet  Google Scholar 

  52. A. Khare, B.P. Mandal, Phys. Lett. A 272, 53 (2000)

    ADS  MathSciNet  Google Scholar 

  53. Li Ge, Phys. Rev. A 94, 013837 (2016)

    ADS  Google Scholar 

  54. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, J. Phys. A: Math. Theor. 41, 244019 (2008)

    ADS  Google Scholar 

  55. C.M. Bender, D.C. Brody, J. Chen, E. Furlan, J. Phys. A: Math. Theor. 40, F153 (2007)

    ADS  Google Scholar 

  56. A.E. Miroshnichenko, B.A. Malomed, Y.S. Kivshar, Phys. Rev. A 84, 012123 (2011)

    ADS  Google Scholar 

  57. X. Liu, S.Dutta Gupta, G.S. Agarwal, Phys. Rev. A 89, 013824 (2014)

    ADS  Google Scholar 

  58. B. Midya, R. Roychoudhury, Phys. Rev. A 87, 045803 (2013)

    ADS  Google Scholar 

  59. Y. Chen, Z. Yan, Sci. Rep. 6, 23478 (2016)

    ADS  Google Scholar 

  60. B. Peng, S.K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, S. Fan, F. Nori, C.M. Bender, L. Yang, Nat. Phys. 10, 394 (2014)

    Google Scholar 

  61. A.V. Turbiner, Commun. Math. Phys. 118(3), 467 (1988)

    ADS  Google Scholar 

  62. A.G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  63. A. Fring, J. Phys. A: Math. Theor. 48(14), 145301 (2015)

    ADS  Google Scholar 

  64. C.M. Bender, G.V. Dunne, J. Math. Phys. 37, 6 (1996)

    ADS  MathSciNet  Google Scholar 

  65. A. Khare, B.P. Mandal, Phys. Lett. A 239, 197–200 (1998)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani Prasad Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, B.P., Mourya, B.K. & Singh, A.K. QES solutions of a two-dimensional system with quadratic nonlinearities. Eur. Phys. J. Plus 135, 327 (2020). https://doi.org/10.1140/epjp/s13360-020-00335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00335-6

Navigation