Skip to main content
Log in

Anomalous fractional diffusion equation for magnetic losses in a ferromagnetic lamination

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

During a full magnetization cycle and under a collinearity situation, the magnetic losses in a ferromagnetic are observable by plotting the average magnetic flux density or magnetization as a function of the tangent magnetic excitation. This highly frequency-dependent magnetic signature is called hysteresis cycle, and its area is equal to the energy consumed during the magnetization cycle. The physical mechanisms behind this energy conversion are complex as they interfere and take place at different geometrical scales. Microscopic Eddy currents due to domain wall variations play an important role, as well as the macroscopic Eddy currents due to the excitation field time variations and ruled by the magnetic field diffusion equation. From the literature on this topic, researchers have been proposing simulation models to reproduce and understand those complex observations. Even if all these losses contributions are physically interconnected, most of the simulation models available in the literature are based on the magnetic losses separation principle where each contribution is considered separately. Physically, the Weiss domains distribution and movements distort the diffusion process which becomes anomalous. In this article, the standard magnetic field diffusion equation is modified to take into account such anomaly. The first-order time derivation of the magnetic induction diffusion is replaced by a fractional-order time derivation. This change offers flexibility in the simulation scheme as the fractional order can be considered as an additional degree of freedom. By adjusting precisely this order, very accurate simulation results can be obtained on a very broad frequency bandwidth for the prediction of the iron losses in a ferromagnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Bertotti, Hysteresis in Magnetism (Academic Press, Elsevier, New York, 1987)

    Google Scholar 

  2. M.A. Raulet, B. Ducharne, J.P. Masson, G. Bayada, The magnetic field diffusion equation including dynamic hysteresis: a linear formulation of the problem. IEEE Trans. Magn. 40(2), 872–875 (2004)

    Article  ADS  Google Scholar 

  3. V. Mazauric, M. Drouineau, L. Rondot, Assessing anomalous losses with dynamic hysteresis model. Int. J. Appl. Electromagn. Mech. 33, 95–101 (2010)

    Article  Google Scholar 

  4. S. Zirka, Y. Moroz, P. Marketos, A. Moses, A viscous-type dynamic hysteresis model as a tool for separation in conducting ferromagnetic laminations. IEEE Trans. Magn. 41(3), 1109–1111 (2005)

    Article  ADS  Google Scholar 

  5. T. Chevalier, A. Kedous-Lebouc, B. Cornut, C. Cester, A new dynamic hysteresis model for electrical steel sheet. Phys. B 275, 197–201 (2000)

    Article  ADS  Google Scholar 

  6. B. Zhang, B. Gupta, B. Ducharne, G. Sebald, T. Uchimoto, Preisach’s model extended with dynamic fractional derivation contribution. IEEE Trans. Magn. 54(3), 1–4 (2017)

    Google Scholar 

  7. B. Zhang, B. Gupta, B. Ducharne, G. Sebald, T. Uchimoto, Dynamic magnetic scalar hysteresis lump model, based on Jiles–Atherton quasi-static hysteresis model extended with dynamic fractional derivative contribution. IEEE Trans. Magn. 54(11), 1–5 (2018)

    Google Scholar 

  8. F. Bitter, Phys. Rev. 38, 1903 (1931)

    Article  ADS  Google Scholar 

  9. P. Weiss, L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. de Phys. 6, 661 (1907)

    MATH  Google Scholar 

  10. P. Weiss, J. Phys. Theor. Appl. 6(1), 661–690 (1907)

    Article  Google Scholar 

  11. R.H. Pry, C.P. Bean, J. Appl. Phys. 29, 532–533 (1958)

    Article  ADS  Google Scholar 

  12. ChP Steinmetz, On the law of hysteresis, reprint. Proc. IEEE 72(2), 196–221 (1984)

    Article  Google Scholar 

  13. G. Bertotti, General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24(1), 621–630 (1980)

    Article  ADS  Google Scholar 

  14. V. Basso, G. Berttoti, O. Bottauscio, F. Fiorillo, M. Pasquale, Power losses in magnetic laminations with hysteresis: finite element modeling and experimental validation. J. Appl. Phys. 81(8), 5606–5608 (1997)

    Article  ADS  Google Scholar 

  15. F. Preisach, Über die magnetische Nachwirkung. Zeitschrift für Physik 94(5–6), 277–302 (1935)

    Article  ADS  Google Scholar 

  16. I.D. Mayergoyz, G. Friedman, Generalized Preisach model of hysteresis. IEEE Trans. Magn. 24(1), 212–217 (1988)

    Article  ADS  Google Scholar 

  17. D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61, 48–60 (1986)

    Article  ADS  Google Scholar 

  18. D.C. Jiles, Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans. Magn. 30(6), 4326–4328 (1994)

    Article  ADS  Google Scholar 

  19. B. Ducharne, G. Sebald, D. Guyomar, G. Litak, Fractional model of magnetic field penetration into a toroidal soft ferromagnetic sample. Int. J. Dyn. Control 6(1), 89–96 (2017)

    Article  MathSciNet  Google Scholar 

  20. B. Ducharne, G. Sebald, D. Guyomar, G. Litak, Dynamics of magnetic field penetration into soft ferromagnets. J. Appl. Phys. 117(24), 243907 (2015)

    Article  ADS  Google Scholar 

  21. A.K. Grünwald, Ueber begrenzte derivationen und deren Anwendung. Z. Math. Phys. XII, 441–480 (1867)

    Google Scholar 

  22. B. Riemann, Gesammelte Werke (1892)

  23. J. Liouville, Mémoire sur le calcul des différentielles à indices quelconques. J. Ecole Pol. Paris 13, 71–162 (1983)

    Google Scholar 

  24. D. Guyomar, B. Ducharne, G. Sebald, Dynamical hysteresis model of ferroelectric ceramics under electric field using fractional derivatives. J. Phys. D Appl. Phys. 40(19), 6048–6054 (2007)

    Article  ADS  Google Scholar 

  25. R. Metzler, J. Klaffer, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  27. A. Atangana, D. Beleanu, Fractional diffusion processes: probability distributions and continuous time random walk. Lect. Notes Phys. 621, 148 (2007)

    Google Scholar 

  28. D. Guyomar, B. Ducharne, G. Sebald, Time fractional derivatives for voltage creep in ferroelectric materials: theory and experiment. J. Phys. D App. Phys. 41(12), 125410 (2008)

    Article  ADS  Google Scholar 

  29. J.M. Colbrook, X. Ma, F.P. Hopkins, J. Squire, Scaling laws of passive-scalar diffusion in the interstellar medium. Month. Not. R. Astronom. Soc. 467(2), 2421–2429 (2017)

    Article  ADS  Google Scholar 

  30. IEC 60404-2, Magnetic materials—Part 2: methods of measurement of the magnetic properties of electrical steel strip and sheet by means of an Epstein frame. Int. Elect. Com. (2008)

  31. IEC 60404-3, Magnetic materials—Part 3: methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester. Int. Elect. Com. (2010)

  32. IEC 60404-6, Magnetic materials–Part 6: methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 200 kHz by the use of ring specimens. Int. Elect. Com. (2003)

  33. J.V. Leite, N. Sadowski, P. Kuo-Peng, N.J. Batistela, J.P.A. Bastos, The inverse Jiles–Atherton model parameters identification. IEEE Trans. Magn. 39(3), 1397–1400 (2003)

    Article  ADS  Google Scholar 

  34. J.V. Leite, N. Sadowski, P. Kuo-Peng, N.J. Batistela, J.P.A. Bastos, A.A. de Espindola, Inverse Jiles–Atherton vector hysteresis model. IEEE Trans. Magn. 40(4), 1769–1775 (2004)

    Article  ADS  Google Scholar 

  35. E. Cardelli, E.D. Torre, B. Tellini, Direct and inverse Preisach modeling of soft materials. IEEE Trans. Magn. 36(4), 1267–1271 (2000)

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by the SCAC (Service de cooperation et d’action culturelle) of the French Embassy to Cameroon. This study was funded by the National Natural Science Foundation of China (Grant No 51805298) and by the Natural Science Foundation of Shandong Province (Grant No. ZR201807090390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ducharne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducharne, B., Deffo, Y.A.T., Zhang, B. et al. Anomalous fractional diffusion equation for magnetic losses in a ferromagnetic lamination. Eur. Phys. J. Plus 135, 325 (2020). https://doi.org/10.1140/epjp/s13360-020-00330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00330-x

Navigation