Skip to main content
Log in

A coupled neutronic and thermal-hydraulic model for ALFRED

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new method of Serpent–OpenFOAM coupling is developed as a multi-physics model for Advanced Lead Fast Reactor Demonstrator. The reactor core is simulated in Serpent, a continuous-energy Monte Carlo reactor physics code for neutronic analysis. A three-dimensional geometry is modeled for the calculation of neutronic parameters of the reactor initial core operation. The calculated parameters are evaluated with a good agreement compared to the available reference. The fuel assembly with the maximum power is pinpointed in order to be used for thermal-hydraulic analysis. A thermal-hydraulic model is developed to perform computational fluid dynamics calculation using OpenFOAM software, with an application of a heat conjugate transfer solver written in C++ language. A symmetric one-six of the fuel assembly with the highest power is considered in order to reduce the time of calculation. A multi-physics approach is adopted to map Serpent and OpenFOAM coupling for neutronic and thermal-hydraulic analysis. Moreover, a procedure is implemented in order to evaluate the convergence while coupling Serpent and OpenFOAM. With the implementation of multi-physics model, the maximum temperature of the fuel and coolant is investigated in order to observe any malfunctions. The results show that the coolant and the fuel temperature limits for the ALFRED’s initial core are well preserved for the fuel assembly with the highest power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(c_{p}\) :

Heat capacity (\(\hbox {J\,kg}^{-1}\,\hbox {K}^{-1}\))

\(D_{k}\) :

Closure coefficient for \(k-\varepsilon \) (–)

\(D_{\varepsilon }\) :

Closure coefficient for \(k-\varepsilon \) (–)

g :

Gravity field (\(\hbox {m\,s}^{-2}\))

I :

Identity tensor (–)

k :

Turbulent kinetic energy (\(\hbox {m}^{2}\,\hbox { s}^{-2}\))

\({L}_{\mathrm{T}}\) :

Turbulence length scale (m)

\(N_{\mathrm{f}}\) :

Number of fuel elements (–)

p :

Pressure (Pa)

P :

Power (W)

\({P}_{\mathrm{r}}\) :

Relative power variation (–)

\(P_{\mathrm{rel}}\) :

Relaxed power distribution (W)

s :

Number of neutrons (–)

T :

Temperature (K)

u :

Velocity field (\(\hbox {m\,s}^{-1}\))

\({U}_{0}\) :

Inlet velocity (\(\hbox {m\,s}^{-1}\))

\(\alpha \) :

Addition under relation factor (–)

K :

Thermal conductivity (\(\hbox {w\,m}^{-1}\,\hbox {k}^{-1}\))

\(\varepsilon \) :

Turbulent dissipation rate (\(\hbox {m}^{2}\,\hbox {s}^{-3}\))

\(\mu _{\mathrm{T}}\) :

Turbulent dynamic viscosity (Pa s)

\(\mu \) :

Dynamic viscosity (Pa s)

\(\rho \) :

Density (\(\hbox {kg\,m}^{-3}\))

References

  1. A. Alemberti, D. De Bruyn, G. Grasso, L. Mansani, D. Mattioli, F. Roelofs, Presented at the FR13-IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, Paris (2013) (unpublished)

  2. G. Grasso, C. Petrovich, D. Mattioli, C. Artioli, P. Sciora, D. Gugiu, G. Bandini, E. Bubelis, K. Mikityuk, Nuclear Eng. Des. 278, 287 (2014)

    Article  Google Scholar 

  3. N. Cerullo, G. Lomonaco IV, Nuclear Fuel Cycle Science and Engineering, ed. by I. Crossland (Woodhead Publishing: Cambridge, UK, 2012), p. 333

  4. C.F. Smith, L. Cinotti, Handbook of Generation IV Nuclear Reactors (Elsevier, Amsterdam, 2016), p. 119

    Book  Google Scholar 

  5. D. Chersola, G. Lomonaco, R. Marotta, G. Mazzini, Nuclear Eng. Des. 273, 542 (2014)

    Article  Google Scholar 

  6. D. Chersola, G. Lomonaco, G. Mazzini, Presented at the 2014 22nd International Conference on Nuclear Engineering (2014) (unpublished)

  7. OpenFOAM, in www.openfoam.org (2017)

  8. G. Lomonaco, W. Borreani, M. Bruzzone, D. Chersola, G. Firpo, M. Osipenko, M. Palmero, F. Panza, M. Ripani, P. Saracco, Therm. Sci. Eng. Prog. 6, 447 (2018)

    Article  Google Scholar 

  9. J.F. Fernández, Universitat Politècnica de Catalunya (UPC) (2012)

  10. J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, J. Nuclear Mater. 299(3), 181 (2001)

    Article  ADS  Google Scholar 

  11. D. Baron, Presented at the Proceedings of Seminar on Thermal Performance of High Burnup LWR Fuel (1998) (unpublished)

  12. J. Fink, J. Nuclear Mater. 279(1), 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Kirillov, Institute for heat and mass transfer in nuclear power plants (Obninsk, 2006)

  14. V. Sobolev, P. Schuurmans, G. Benamati, J. Nuclear Mater. 376(3), 358 (2008)

    Article  ADS  Google Scholar 

  15. G. Grasso, C. Petrovich, K. Mikityuk, D. Mattioli, F. Manni, D. Gugiu, Presented at the Proceedings of the IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (2013) (unpublished)

  16. D. Lamberts, presented at the SCK \(\cdot \)CEN/PSD, LEADER Project Meeting, Bologna, 25th October (2011) (unpublished)

  17. B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3(2), 269 (1974)

    Article  ADS  Google Scholar 

  18. Y. Philipponneau, J. Nuclear Mater. 188, 194 (1992)

    Article  ADS  Google Scholar 

  19. C. Duriez, J.-P. Alessandri, T. Gervais, Y. Philipponneau, J. Nuclear Mater. 277(2), 143 (2000)

    Article  ADS  Google Scholar 

  20. J. Leppänen, VTT Technical Research Centre of Finland 4, (2013)

  21. T. Viitanen, J. Leppänen, Nuclear Sci. Eng. 177(1), 77 (2014)

    Article  Google Scholar 

  22. J. Dufek, W. Gudowski, Nuclear Sci. Eng. 152(3), 274 (2006)

    Article  Google Scholar 

  23. G. Rimpault, D. Plisson, J. Tommasi, R. Jacqmin, J. Rieunier, D. Verrier, D. Biron, presented at the Proceedings of International Conference on PHYSOR (2002) (unpublished)

  24. A. Weisenburger, A. Heinzel, G. Müller, H. Muscher, A. Rousanov, J. Nuclear Mater. 376(3), 274 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the management and staff of CeSNEF-Nuclear Engineering Division, Department of Energy, Politectico di Milano, Milano, Italy, for their support and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cammi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalipour, M., Cammi, A. & Lorenzi, S. A coupled neutronic and thermal-hydraulic model for ALFRED. Eur. Phys. J. Plus 135, 328 (2020). https://doi.org/10.1140/epjp/s13360-020-00328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00328-5

Navigation