Skip to main content
Log in

Bianchi type cosmological models in f(RT) theory with quadratic functional form

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The spatially homogeneous and anisotropic Bianchi type-III, V and VI\(_{0}\) cosmological models have been investigated in f(RT) gravity by choosing the function f(RT) of the form \(R+\alpha R^2+\lambda T\). Here, R is the Ricci scalar, T is the trace of the energy momentum tensor and \(\alpha \), \(\lambda \) are constants. Exact solutions to the field equations of three models are obtained with the help of hybrid scale factor and the proportionality of shear scalar with expansion scalar (i.e., \(\sigma \propto \theta \)). We have calculated some physical and geometrical properties of the models and their behavior is thoroughly studied with the help of their plots with respect to redshift (z). It is observed that for all three models, pressure (p) is negative and energy density (\(\rho \)) is positive. In case of Bianchi type-V, VI\(_{0}\) models, the EoS parameter exhibits quintom-like behavior. Also, by using \(f(R,T)=R+\alpha R^2+\lambda T\) functional form, we have studied all energy conditions for three models. At present (\(z=0\)), the energy conditions particularly NEC and DEC are fulfilled, and SEC is violated for all three models which supports the accelerating expansion of the universe. The advantage of choosing this functional form is that it gives the asymptotically exact de Sitter solution and also the obtained values of physical parameters matches with the current observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.R.K. Reddy, Y. Aditya, K. Dasu Naidu, Can. J. Phys. 97(9), 932 (2018)

  2. M. Vijaya Santhi, V.U.M. Rao, Y. Aditya, Can. J. Phys. 95, 2 (2017)

    Google Scholar 

  3. P. K. Sahoo, S. Bhattacharjee, arXiv:1907.13460v1 [physics.gen-ph], (2019)

  4. Daris Samart, Phongpichit Channuie, Eur. Phys. J. C 79, 347 (2019)

    ADS  Google Scholar 

  5. Kazuharu Bamba1, Salvatore Capozziello, S. Nojiri1, Sergei D. Odintsov, arXiv:1205.3421v3 [gr-qc] (18 Jul 2012)

  6. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    ADS  Google Scholar 

  7. S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998)

    ADS  Google Scholar 

  8. M.S. Turner, Int. J. Mod. Phys. A 17, 180 (2002)

    ADS  Google Scholar 

  9. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    ADS  Google Scholar 

  10. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  11. M. Li, Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  12. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002)

    ADS  Google Scholar 

  13. P.H.R.S. Moraes, P.K. Sahoo, Barkha Taori, Prabati Sahoo. Int. J. Mod. Phys. D 289(10), 1950124 (2019)

    Google Scholar 

  14. M. Farasat Shamir, Astrophys. Space Sci. 330, 183 (2010)

  15. S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)

    ADS  Google Scholar 

  16. S. Capozziello, O. Luongo, E.N. Saridakis, Phys. Rev. D 91, 124037 (2015)

    ADS  MathSciNet  Google Scholar 

  17. S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B 724(4), 437 (2013)

    ADS  Google Scholar 

  18. A. Jawad, A. Pasqua, S. Chattopadhyay, Astrophys. Space Sci. 334, 489 (2016)

    Google Scholar 

  19. T.M. Rezaei, A. Amani, Can. J. Phys. 95, 11 (2017)

    Google Scholar 

  20. M.F. Shamir, A. Komal, Int. J. Geom. Methods Mod. Phys. 14, 12 (2017)

    Google Scholar 

  21. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  22. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    ADS  Google Scholar 

  23. A.S. Koshelev, L. Modesto, L. Low Rachwa, A.A. Starobinskye, J. High Energy Phys. 11, 67 (2016)

    ADS  Google Scholar 

  24. P. H. R. S. Moraes, R. A. C. Correa, G. Ribeiro, arXiv:1701.01027v1 [gr-qc], (2016)

  25. I. Noureen, M. Zubair, Eur. Phys. J. C 75, 62 (2015)

    ADS  Google Scholar 

  26. I. Noureen, M. Zubair, A.A. Bhatti, G. Abbas, Eur. Phys. J. C 75, 323 (2015)

    ADS  Google Scholar 

  27. M. Zubair, I. Noureen, Eur. Phys. J. C 75, 265 (2015)

    ADS  Google Scholar 

  28. P.K. Sahoo, P.H.R.S. Moraes, Parbati Sahoo, Eur. Phys. J. C 78, 46 (2018)

    ADS  Google Scholar 

  29. V.U.M. Rao, T. Vinutha, D. Neelima, G. Surya Narayana, Afr. Rev. Phys. 10, 0017 (2015)

    Google Scholar 

  30. P.K. Sahoo, S.K. Sahu, A. Nath, Eur. Phys. J. Plus 131, 18 (2016)

    Google Scholar 

  31. B. Mishra, S. Tarai, S.K. Tripathy, Mod. Phys. Lett. A 33, 29 (2017)

    Google Scholar 

  32. D.R.K. Reddy, R. Santikumar, R.L. Naidu, Astrophys. Space Sci. 342, 249 (2012)

    ADS  Google Scholar 

  33. V.U.M. Rao, D.C. Papa Rao, Astrophys. Space Sci. 357, 1 (2015)

    Google Scholar 

  34. P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. C 79, 67 (2019)

    Google Scholar 

  35. Y. Aditya, D.R.K. Reddy, Astrophys. Space Sci. 364, 1 (2019)

    ADS  Google Scholar 

  36. Shriram, Surendra K. Singh, M. K Verma, Physics & Astronomy International Journal 2, 4 (2018)

  37. D.D. Pawar, R.V. Mapari, P.K. Agrawal, J. Astrophys. Astron. 40, 13 (2019)

    ADS  Google Scholar 

  38. S. Aygun, C. Aktas, B. Mishra, Indian J. Phys. 93, 3 (2018)

    Google Scholar 

  39. O. Akarsu, Suresh Kumar, R. Myrzakulov, M. Sami, Lixin Xiu, JCAP 01, 022 (2014)

  40. A.K. Yadav, P.K. Sahoo, V.K. Bhardwaj, Mod. Phys. Lett. A 34, 19 (2019)

    Google Scholar 

  41. T. Vinutha, V.U.M. Rao, B. Getaneh, M. Mengesha, Astrophys. Space Sci. 363, 9 (2018)

    Google Scholar 

  42. D. Naidu, D.R.K. Reddy, Y. Aditya, Eur. Phys. J. Plus 133, 303 (2018)

    Google Scholar 

  43. B. Mishra, P.P. Ray, S.K.J. Pacif, Eur. Phys. J. Plus 132, 429 (2017)

    Google Scholar 

  44. C.E. Cunha, M. Lima, H. Ogaizu, J. Frieman, H. Lin, Mon. Not. R. Astron. Soc. 396, 2379 (2009)

    ADS  Google Scholar 

  45. P.A.R. Ade, N. Aghanim, M. Arnaud et al., Astron. Astrophys. 594, A13 (2016R)

  46. A. Raychaudhuri, Phys. Rev. 98, 1123 (1955)

    ADS  MathSciNet  Google Scholar 

  47. S. Capozzeiello, Francisco S. N. Lobo, Jose P. Mimoso, Phys. Lett. B 730, 280 (2014)

  48. S. Capozziello, Mariafelicia De Laurentis, arXiv:1108.6266v2 [gr-qc] (2 Sep 2011)

  49. S. Capozzeiello, F.S.N. Lobo, J.P. Mimoso, Phys. Rev. D 91, 124019 (2015)

    ADS  MathSciNet  Google Scholar 

  50. M. Sharif, A. Jawad, Eur. Phys. J. C 72, 2097 (2012)

    ADS  Google Scholar 

  51. D. Liu, M.J. Reboucas, Phys. Rev. D 86, 083515 (2012)

    ADS  Google Scholar 

  52. J. Sadeghi, A. Banijamali, H. Vaez, Int. J. Theor. Phys. 51, 2888 (2012)

    Google Scholar 

  53. Abdul Jawad, Antonio Pasqua, Surajit Chattopadhyay, Astrophys. Space Sci. 344, 489 (2013)

    ADS  Google Scholar 

  54. C. S. Santos, Janilo Santos, Salvatore Capozziello, and Jailson S. Alcaniz, arXiv:1606.02212v4 [gr-qc] (6 Mar 2017)

Download references

Acknowledgements

Authors are very much thankful to the anonymous reviewer for the valuable suggestions and constructive comments which have significantly improved the paper in terms of research and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vinutha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinutha, T., Kavya, K.S. Bianchi type cosmological models in f(RT) theory with quadratic functional form. Eur. Phys. J. Plus 135, 306 (2020). https://doi.org/10.1140/epjp/s13360-020-00309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00309-8

Navigation