Skip to main content
Log in

Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The improved form of the generalized Pöschl–Teller potential (GPT) has been introduced to discuss diatomic molecules. Schrödinger equation has been solved for the improved generalized Pöschl–Teller (IGPT) potential by applying a new Pekeris-type approximation to the centrifugal term, and then the rotational–vibrational energy eigenvalue equation has been obtained. By using this ro-vibrational energy eigenvalue equation, firstly, we have calculated the vibrational energies of the \(X^{1}\Sigma ^{+}\) state of CO molecule and compared them with the experimental Rydberg–Klein–Rees (RKR) data and theoretical results obtained by using Morse, improved Tietz and improved Pöschl–Teller potentials. It has been showed that the IGPT potential is one of the best potential energy function in fitting experimental RKR data for \(\hbox {CO}(X^{1}\Sigma ^{+})\) molecule. Secondly, we have obtained the maximum possible ro-vibrational energies of \(\hbox {CO}(X^{1}\Sigma ^{+})\) molecule by using the IGPT potential. Also, it has been proved that the Pekeris-type approximation should be used for the centrifugal term instead of Greene–Aldrich approximation in order to get most probable (or more accurate) ro-vibrational energies for the carbon monoxide molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.M. Morse, Phys. Rev. 34, 57 (1929)

    ADS  Google Scholar 

  2. N. Rosen, P.M. Morse, Phys. Rev. 42, 1932 (1933)

    Google Scholar 

  3. M.F. Manning, N. Rosen, Phys. Rev. 44, 1951 (1933)

    Google Scholar 

  4. G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)

    ADS  Google Scholar 

  5. A.A. Frost, B. Musulin, J. Chem. Phys. 22, 1017 (1954)

    ADS  Google Scholar 

  6. Z.H. Deng, Y.P. Fan, Shandong Univ. J. 7, 162 (1957)

    Google Scholar 

  7. T. Tietz, J. Chem. Phys. 38, 3036 (1963)

    ADS  Google Scholar 

  8. D. Schiöberg, Mol. Phys. 59, 1123 (1986)

    ADS  Google Scholar 

  9. H. Wei, Phys. Rev. A 42, 2524 (1990)

    ADS  Google Scholar 

  10. Y.P. Varshni, Rev. Mod. Phys. 29, 664 (1957)

    ADS  Google Scholar 

  11. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)

    ADS  Google Scholar 

  12. P.Q. Wang, L.H. Zhang, C.S. Jia, J.Y. Liu, J. Mol. Spectrosc. 274, 5 (2012)

    ADS  Google Scholar 

  13. P.Q. Wang, J.Y. Liu, L.H. Zhang, S.Y. Cao, C.S. Jia, J. Mol. Spectrosc. 278, 23 (2012)

    ADS  Google Scholar 

  14. G.D. Zhang, J.Y. Liu, L.H. Zhang, W. Zhou, C.S. Jia, Phys. Rev. A 86, 062510 (2012)

    ADS  Google Scholar 

  15. C.S. Jia, L.H. Zhang, X.L. Peng, Int J Quantum Chem. 117, e25383 (2017)

    Google Scholar 

  16. O. Mustafa, J. Phys. B At. Mol. Opt. Phys. 48, 065101 (2015)

    ADS  Google Scholar 

  17. O. Mustafa, Phys. Scr. 90, 065002 (2015)

    ADS  Google Scholar 

  18. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    ADS  Google Scholar 

  19. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 726, 83 (2019)

    ADS  Google Scholar 

  20. C.S. Jia, Y.T. Wang, L.S. Wei, C.W. Wang, X.L. Peng, L.H. Zhang, ACS Omega 4, 20000 (2019)

    Google Scholar 

  21. C.S. Jia, X.T. You, J.Y. Liu, L.H. Zhang, X.L. Peng, Y.T. Wang, L.S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    ADS  Google Scholar 

  22. A.N. Ikot, W. Azogor, U.S. Okorie, F.E. Bazuaye, M.C. Onjeaju, C.A. Onate, E.O. Chukwuocha, Indian J. Phys. 93, 1171 (2019)

    ADS  Google Scholar 

  23. U.S. Okorie, E.E. Ibekwe, M.C. Onyeaju, A.N. Ikot, Eur. Phys. J. Plus 133, 433 (2018)

    Google Scholar 

  24. Z. Ocak, H. Yanar, M. Salti, O. Aydogdu, Chem. Phys. 513, 252 (2018)

    Google Scholar 

  25. H.F. Kisoglu, H. Yanar, O. Aydogdu, M. Salti, J. Mol. Model. 25, 143 (2019)

    Google Scholar 

  26. J. García-Martínez, J. García-Ravelo, J. Morales, J.J. Peña, Int. J. Quantum Chem. 112, 195 (2012)

    Google Scholar 

  27. J.J. Peña, J. García-Martínez, J. García-Ravelo, J. Morales, Int. J. Quantum Chem. 115, 158 (2015)

    Google Scholar 

  28. G. Ovando, J.J. Peña, J. Morales, Theor. Chem. Acc. 135, 62 (2016)

    Google Scholar 

  29. H. Yanar, A. Havare, Adv. High Energy Phys. 2015, 915796 (2015)

    Google Scholar 

  30. H. Yanar, O. Aydogdu, M. Salti, Mol. Phys. 114, 3134 (2016)

    ADS  Google Scholar 

  31. A. Taş, A. Havare, Few-Body Syst. 59, 52 (2018)

    Google Scholar 

  32. A. Taş, A. Havare, Chin. Phys. B 26, 100301 (2017)

    ADS  Google Scholar 

  33. L.E. Gendenshtein, Jetp Lett. 38, 356 (1983)

    ADS  Google Scholar 

  34. R. Dutt, A. Khare, U.P. Sukhatme, Am. J. Phys. 56, 163 (1988)

    ADS  Google Scholar 

  35. V.G. Bagrov, D.M. Gitman, Exact Solution of Relativistic Wave Equations (Kluwer Academic Publishers, Dordrecht, 1990)

    MATH  Google Scholar 

  36. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    ADS  MathSciNet  Google Scholar 

  37. C. Grosche, IL Nuovo Cimento B 108, 1365 (1993)

    ADS  Google Scholar 

  38. S.H. Dong, A.G. Cisneros, Ann. Phys. 323, 1136 (2008)

    ADS  Google Scholar 

  39. S.H. Dong, W.C. Qiang, J. García-Ravelo, Int. J. Mod. Phys. A 23, 1537 (2008)

    ADS  Google Scholar 

  40. W.C. Qiang, W.L. Chen, K. Li, G.F. Wei, Phys. Scr. 79, 025005 (2009)

    ADS  Google Scholar 

  41. W.C. Qiang, S.H. Dong, Phys. Lett. A 372, 4789 (2008)

    ADS  Google Scholar 

  42. C.S. Jia, T. Chen, L.G. Cui, Phys. Lett. A 373, 1621 (2009)

    ADS  MathSciNet  Google Scholar 

  43. T. Chen, Y.F. Diao, C.S. Jia, Phys. Scr. 79, 065014 (2009)

    ADS  Google Scholar 

  44. G.F. Wei, S.H. Dong, Phys. Lett. A 373, 2428 (2009)

    ADS  MathSciNet  Google Scholar 

  45. R. Rydberg, Z. Phys. 80, 514 (1933)

    ADS  Google Scholar 

  46. O. Klein, Z. Phys. 76, 226 (1932)

    ADS  Google Scholar 

  47. A.L.G. Rees, Proc. Phys. Soc. 59, 998 (1947)

    ADS  Google Scholar 

  48. B. Tang, C.S. Jia, Eur. Phys. J. Plus 132, 375 (2017)

    Google Scholar 

  49. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    ADS  Google Scholar 

  50. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    ADS  Google Scholar 

  51. O. Aydogdu, M. Salti, H. Yanar, 6th IFSCOM2019 Proceeding Book (2019), pp. 108–113

  52. P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010)

    ADS  Google Scholar 

  53. S.M. Kirschner, J.K.G. Watson, J. Mol. Spectrosc. 51, 321 (1974)

    ADS  Google Scholar 

  54. D. Steele, E.R. Lippincott, J.T. Vanderslice, Rev. Mod. Phys. 34, 239 (1962)

    ADS  Google Scholar 

  55. A.A. Zavitsas, J. Am. Chem. Soc. 113, 4755 (1991)

    Google Scholar 

  56. Ralph P. Boas, Special Functions of Mathematical Physics (Birkhaeuser Verlag, Basel, 1988)

    Google Scholar 

  57. H.B. Liu, L.Z. Yi, C.S. Jia, J. Math. Chem. 56, 2982 (2018)

    MathSciNet  Google Scholar 

  58. P. Zhang, H.C. Long, C.S. Jia, Eur. Phys. J. Plus 131, 117 (2016)

    Google Scholar 

  59. A.K. Roy, Results Phys. 3, 103 (2013)

    ADS  Google Scholar 

  60. I. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari, J. Phys. B At. Mol. Opt. Phys. 40, 4245 (2007)

    ADS  Google Scholar 

  61. W.C. Qiang, S.H. Dong, Phys. Lett. A 363, 169 (2007)

    ADS  MathSciNet  Google Scholar 

  62. E.D. Filho, R.M. Ricotta, Phys. Lett. A 269, 269 (2000)

    ADS  MathSciNet  Google Scholar 

  63. A.K. Roy, Int. J. Quantum Chem. 114, 383 (2014)

    Google Scholar 

  64. S.M. Ikhdair, Phys. Scr. 83, 015010 (2011)

    ADS  Google Scholar 

  65. M. Bag, M.M. Panja, R. Dutt, Phys. Rev. A 46, 6059 (1992)

    ADS  Google Scholar 

  66. Y.P. Varshni, Can. J. Chem. 66, 763 (1988)

    Google Scholar 

  67. K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, Princeton, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmi Yanar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanar, H., Taş, A., Salti, M. et al. Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation. Eur. Phys. J. Plus 135, 292 (2020). https://doi.org/10.1140/epjp/s13360-020-00297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00297-9

Navigation