Skip to main content

Advertisement

Log in

Entropy analysis for the peristalsis flow with homogeneous–heterogeneous reaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Our major focus in this analysis is to study the peristaltic motion of fluid by considering the homogeneous–heterogeneous reaction aspect. Prandtl nanofluid has been carried out for this purpose. Magnetic field is applied in the perpendicular direction to the flow. Joule heating effect is also considered in this analysis. Buongiorno nanofluid model has been used which incorporates two prominent slip mechanisms, i.e., Brownian motion and thermophoresis. The second law of thermodynamics has been utilized for entropy generation analysis. No-slip boundary conditions are employed for the considered analysis. NdSolve command of Mathematica 9.0 is employed for the solution of problem. Graphs for pertinent parameters are plotted and analyzed. These graphs contain velocity, temperature, homogeneous–heterogeneous reaction, entropy, and heat transfer coefficient. Key points of the investigation are collected in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of the fluids with nanoparticles. ASME Fluids Eng. Div. 231, 99–105 (1995)

    Google Scholar 

  2. L. Zheng, C. Zhang, X. Zhang, J. Zhang, Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J. Frankl. Inst. 350, 990–1007 (2013)

    Article  MathSciNet  Google Scholar 

  3. L. Yang, K. Du, A comprehensive review on heat transfer characteristics of \(\text{ TiO }_{2}\) nanofluids. Int. J. Heat Mass Trans. 108, 11–31 (2017)

    Article  Google Scholar 

  4. M. Sheikholeslami, Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018)

    Article  Google Scholar 

  5. M. Sheikholeslami, B. Rezaeianjouybari, M. Darzi, A. Shafee, Z. Li, T.K. Nguyen, Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 141, 974–980 (2019)

    Article  Google Scholar 

  6. T. Hayat, S. Nawaz, A. Alsaedi, B. Ahmad, Peristaltic activity of blood-titanium nanofluid subject to endoscope and entropy generation. J. Braz. Soc. Mech. Sci. Eng. 40, 574 (2018)

    Article  Google Scholar 

  7. S. Mosayebidorcheh, M. Hatami, Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel. Int. J. Heat Mass Trans. 126, 790–799 (2018)

    Article  Google Scholar 

  8. M. Sheikholeslami, R. Haq, A. Shafee, Z. Li, Y.G. Elaraki, I. Tlili, Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transf. 135, 470–478 (2019)

    Article  Google Scholar 

  9. M. Sheikholeslami, M. Jafaryar, Z. Li, Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int. J. Heat Mass Transf. 124, 980–989 (2018)

    Article  Google Scholar 

  10. M. Sheikholeslami, R. Haq, A. Shafee, Z. Li, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transf. 130, 1322–1342 (2019)

    Article  Google Scholar 

  11. T.W. Latham, Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA (1966)

  12. A.H. Shapiro, M.Y. Jafrin, S.L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    Article  ADS  Google Scholar 

  13. M.M. Bhatti, A. Zeeshan, N. Ijaz, O.A. Bég, A. Kadir, Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci. Technol. Int. J. 20, 1129–1139 (2017)

    Google Scholar 

  14. S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine. Comput. Methods Programs Biomed. 135, 89–100 (2016)

    Article  Google Scholar 

  15. K. Javid, N. Ali, M. Sajid, Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. Meccanica 51, 87–98 (2016)

    Article  MathSciNet  Google Scholar 

  16. T. Hayat, H. Zahir, A. Tanveer, A. Alsaedi, Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel. Results Phys. 8, 1291–1300 (2018)

    Article  ADS  Google Scholar 

  17. G.C. Shit, N.K. Ranjit, Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system. J. Mol. Liq. 221, 305–315 (2016)

    Article  Google Scholar 

  18. J. Prakash, A. Sharma, D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liqs. 249, 843–855 (2018)

    Article  Google Scholar 

  19. A. Alsaedi, N. Batool, H. Yasmin, T. Hayat, Convective heat transfer analysis on Prandtl fluid model with peristalsis. Appl. Bionics Biomech. 10, 197–208 (2013)

    Article  Google Scholar 

  20. N.N. Jyothi, P. Devaki, S. Sreenadh, Analysis of magnetic field on the peristaltic transport of Johnson fluid in an inclined channel bounded by flexible walls. Int. J. Curr. Res. 8, 26617–26634 (2016)

    Google Scholar 

  21. T. Hayat, N. Aslam, A. Alsaedi, M. Rafiq, Numerical analysis for endoscope and Soret and Dufour effects on peristalsis of Prandtl fluid. Results Phys. 7, 2855–2864 (2017)

    Article  ADS  Google Scholar 

  22. S.R. Kumar, MHD peristaltic transportation of a conducting blood flow with porous medium through inclined coaxial vertical channel. Int. J. Bio-Sci. Bio-Technol. 8, 11–26 (2016)

    Article  Google Scholar 

  23. T. Hayat, S. Nawaz, A. Alsaedi, M. Rafiq, Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results Phys. 7, 982–990 (2017)

    Article  ADS  Google Scholar 

  24. M.M. Bhatti, M.A. Abbas, Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex. Eng. J. 55, 1017–1023 (2016)

    Article  Google Scholar 

  25. A.M. Abd-Alla, S.M. Abo-Dahab, A. Kilicman, Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscope. J. Magn. Magn. Mater. 384, 79–86 (2015)

    Article  ADS  Google Scholar 

  26. T. Hayat, A. Bibi, H. Yasmin, B. Ahmad, Simultaneous effects of Hall current and homogeneous/heterogeneous reactions on peristalsis. J. Taiwan Inst. Chem. Eng. 58, 28–38 (2016)

    Article  Google Scholar 

  27. A. Tanveer, M. Khan, T. Salahuddin, M.Y. Malik, F. Khan, Theoretical investigation of peristaltic activity in MHD based blood flow of non-Newtonian material. Comput. Methods Programs Biomed. 187, 105225 (2020)

    Article  Google Scholar 

  28. M. Awais, S. Farooq, T. Hayat, B. Ahmad, Comparative study of silver and copper water magneto nanoparticles with homogeneous–heterogeneous reactions in a tapered channel. Int. J. Heat Mass Transf. 115, 108–114 (2017)

    Article  Google Scholar 

  29. A. Tanveer, T. Hayat, A. Alsaedi, B. Ahmad, Mixed convective peristaltic flow of Sisko fluid in curved channel with homogeneous–heterogeneous reaction effects. J. Mol. Liq. 233, 131–138 (2017)

    Article  Google Scholar 

  30. T. Hayat, J. Akram, A. Alsaedi, H. Zahir, Endoscopy and homogeneous–heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid. Results Phys. 8, 481–488 (2018)

    Article  ADS  Google Scholar 

  31. A. Bejan, Second law analysis in heat transfer. Energy 5, 720–732 (1980)

    Article  ADS  Google Scholar 

  32. A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-time Systems and Finite-Time Processes (CRC Press, New York, 1996)

    MATH  Google Scholar 

  33. T. Hayat, S. Nawaz, A. Alsaedi, Entropy generation in peristalsis with different shapes of nanomaterial. J. Mol. Liq. 248, 447–458 (2017)

    Article  Google Scholar 

  34. M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. N.S. Akbar, Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy 82, 23–30 (2015)

    Article  Google Scholar 

  36. S. Nawaz, T. Hayat, A. Alsaedi, Analysis of entropy generation in peristalsis of Williamson fluid in curved channel under radial magnetic field. Comput. Methods Programs Biomed. 180, 105013 (2019)

    Article  Google Scholar 

  37. T. Hayat, M. Rafiq, B. Ahmad, S. Asghar, Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame. Int. J. Heat Mass Transf. 108, 1775–1786 (2017)

    Article  Google Scholar 

  38. N.S. Akbar, M. Raza, R. Ellahi, Peristaltic flow with thermal conductivity of \(H_{2} O+Cu\) nanofluid and entropy generation. Results Phys. 5, 115–124 (2015)

    Article  ADS  Google Scholar 

  39. T. Hayat, S. Nawaz, A. Alsaedi, O. Mahian, Entropy generation in peristaltic flow of Williamson nanofluid. Phys. Scr. 94, 125216 (2019)

    Article  ADS  Google Scholar 

  40. M.A. Abbas, Y. Bai, M.M. Rashidi, M.M. Bhatti, Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy 18, 90 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Higher Education Commission (HEC) of Pakistan for financial support of this work under the project No. 20-3088/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Nawaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nawaz, S. & Alsaedi, A. Entropy analysis for the peristalsis flow with homogeneous–heterogeneous reaction. Eur. Phys. J. Plus 135, 296 (2020). https://doi.org/10.1140/epjp/s13360-020-00293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00293-z

Navigation