Skip to main content
Log in

Neutron shell closure at N = 32 and N = 40 in Ar and Ca isotopes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate features of the ground state of some nuclei far from the stability for isotope chains with proton numbers Z = 18 and 20. Our aim is to predict the eventual existence of magic numbers in these exotic nuclei. For this purpose, we use two methods: the non-relativistic Hartree–Fock–Bogoliubov approach based on SLy4 Skyrme functional and the relativistic (so-called covariant) density functional theory by using the DD-ME2 force parametrization. We compare our results with the available experimental data and with the predictions of other models such as finite range droplet model (FRDM). Our present investigation predicts that N = 32 and N = 40 are magic numbers for Ar and Ca isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995)

    Google Scholar 

  2. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997)

    Google Scholar 

  3. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Google Scholar 

  4. B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992)

    Google Scholar 

  5. P. Ring, Prog. Partilce Nuclear Phys. 37, 193 (1996)

    Google Scholar 

  6. W. Pöschl, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 79, 3841 (1997)

    Google Scholar 

  7. J. Dobaczewski, H. Flocard, J. Treiner, Nuclear. Phys. A 422, 103 (1984)

    Google Scholar 

  8. V.F. Janssens Robert, Nature 435(7044), 897 (2005)

    Google Scholar 

  9. J.W. Negele, Rev. Mod. Phys. 54, 913 (1982)

    Google Scholar 

  10. J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

    Google Scholar 

  11. G. Hagen et al., Phys. Scr. 91, 063006 (2016)

    Google Scholar 

  12. B.R. Barrett et al., Prog. Partilce Nuclear Phys. 69, 131 (2013)

    Google Scholar 

  13. J.E. Drut et al., Prog. Partilce Nuclear Phys. 64, 120 (2010)

    Google Scholar 

  14. M. Grasso, Prog. Particle Nuclear Phys. 106, 256 (2019)

    Google Scholar 

  15. A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000)

    Google Scholar 

  16. A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves, H.L. Ravn, G. Marguier, Phys. Rev. C 31, 2226 (1985)

    Google Scholar 

  17. R. Kanungo, Phys Scr. T. 152, 014002 (2013)

    Google Scholar 

  18. H. Grawe et al., Rep. Prog. Phys. 70, 1525 (2007)

    Google Scholar 

  19. B. Jurado, Phys. Lett. B 649, 43 (2007)

    Google Scholar 

  20. T. Nakamura et al., Prog. Particle Nuclear Phys. 97, 53 (2017)

    Google Scholar 

  21. O. Sorlin, Phys. Scr. T. 152, 014003 (2013)

    Google Scholar 

  22. T. Otsuka, Phys. Scr. 152, 014007 (2013)

    Google Scholar 

  23. I. Talmi, Simple Models of Complex Nuclei (Harwood Academic publishers, Amsterdam, 1993)

    Google Scholar 

  24. P. Ring, P. Schuck (eds.), The Nuclear Many-Body Problem (Springer, New York, 1980)

    Google Scholar 

  25. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nuclear Phys. A 635, 231–256 (1997)

    Google Scholar 

  26. A.B. Migdal (ed.), Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967)

    Google Scholar 

  27. M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167, 43 (2005)

    Google Scholar 

  28. W. Greiner, J.A. Maruhn, Nuclear Models (Springer, Berlin, 1995)

    Google Scholar 

  29. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 85, 024314 (2012)

    Google Scholar 

  30. G.A. Lalazissis, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Google Scholar 

  31. T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    Google Scholar 

  32. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185, 1808–1821 (2014)

    Google Scholar 

  33. M. Goeppert Mayer, J.H. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955)

    Google Scholar 

  34. H. Kucharek, P. Ring, Z. Phys. A 339, 23 (1991)

    Google Scholar 

  35. A.V. Afanasjev, P. Ring, J. Konig, Nuclear Phys. A 676, 196 (2000)

    Google Scholar 

  36. J. Dobaczewski, W. Nazarewicz, T.R. Werner, Phys. Scr. T. 56, 15 (1995)

    Google Scholar 

  37. S.A. Fayans, S.V. Tolokonnikov, E.L. Trybov, D. Zawischa, Phys. Lett. B 338, 1 (1994)

    Google Scholar 

  38. M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, S. Wild, Comput. Phys. Commun. 184, 1592 (2013)

    Google Scholar 

  39. X.W. Xia et al., At. Data Nuclear Data Tables 121, 1 (2018)

    Google Scholar 

  40. J. Okolowicz et al., Phys. Rep. 374, 271 (2003)

    Google Scholar 

  41. C. Forssen et al., Phys. Scr. T. 152, 014022 (2013)

    Google Scholar 

  42. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Nuclear ground-state masses and deformations. At. Data Nuclear Data Tables 59, 185–381 (1995)

    Google Scholar 

  43. Y. el Bassem, M. Oulne, Int. J. Mod. Phys. E 24, 1550073 (2015)

    Google Scholar 

  44. P. Möller, A.J. Sierka, T. Ichikawab, H. Sagawa, At. Data Nuclear Data Tables 109, 1–204 (2016)

    Google Scholar 

  45. M. Wang, G. Audi, A.H. Wapstra et al., The Ame 2012 atomic mass evaluation. Chin. Phys. C 36, 1603 (2012)

    Google Scholar 

  46. Y.S. Lutostansky, S.M. Lukyanov, Y.E. Penionzhkevich, M.V. Zverev, Neutron Drip Line in the Region of O-Mg Isotopes.No. JINR 6-115-2002. Joint of Institute for Nuclear Research (2002)

  47. A. Chaudhuri et al., Phys. Rev. C 88, 054317 (2013)

    Google Scholar 

  48. L. Zamick, Ann. Phys. 66, 784–789 (1971)

    Google Scholar 

  49. I. Talmi, Nuclear. Phys. A 423, 189–196 (1984)

    Google Scholar 

  50. W. Ryssens, V. Hellemans, M. Bender, P.H. Heenen, Comput. Phys. Commun. 187, 175–194 (2015)

    Google Scholar 

  51. B. Schuetrumpf, P.-G. Reinhard, P.D. Stevenson, A.S. Umar, J.A. Maruhn, Comput. Phys. Commun. 229, 211–213 (2018)

    Google Scholar 

Download references

Acknowledgements

Discussions with T. Nikšić from University of Zagreb, Faculty of Science, Physics Department, Croatia, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oulne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adri, M., Oulne, M. Neutron shell closure at N = 32 and N = 40 in Ar and Ca isotopes. Eur. Phys. J. Plus 135, 268 (2020). https://doi.org/10.1140/epjp/s13360-020-00277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00277-z

Navigation