Skip to main content
Log in

Space-time waves from a collapse with a time-dependent cosmological parameter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the emission of space-time waves produced by back-reaction effects during a collapse of a spherically symmetric universe with a time-dependent cosmological parameter, which is driven by a scalar field. As in a previous work, the final state avoids the final singularity due to the fact the co-moving relativistic observer never reaches the center, because the physical time evolution \(\mathrm{d}\tau =U_{0}\,\mathrm{d}x^0\), decelerates for a co-moving observer which falls with the collapse. The equation of state of the system depends on the rate of the collapse, but always is positive: \(0< \omega (p) < 0.25\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We can define the operator

    $$\begin{aligned} \delta {\hat{x}}^{\alpha }(t,\vec {x}) = \frac{1}{(2\pi )^{3/2}} \int \mathrm{d}^3 k \, {\check{e}}^{\alpha } \left[ b_k \, {\hat{x}}_k(t,\vec {x}) + b^{\dagger }_k \, {\hat{x}}^*_k(t,\vec {x})\right] , \end{aligned}$$

    such that \(b^{\dagger }_k\) and \(b_k\) are the creation and destruction operators of space-time, such that \(\left\langle B \left| \left[ b_k,b^{\dagger }_{k'}\right] \right| B \right\rangle = \delta ^{(3)}(\vec {k}-\vec {k'})\) and \({\check{e}}^{\alpha }=\epsilon ^{\alpha }_{\,\,\,\,\beta \gamma \delta } {\check{e}}^{\beta } {\check{e}}^{\gamma }{\check{e}}^{\delta }\), where

    figure a

    in order to

    figure b
  2. We use the asymptotic expressions for the Bessel functions, for \(f(t) \gg 1\), which are

    figure c
    figure d

References

  1. V. Husain, O. Winkler, Phys. Rev. D71, 104001 (2005)

    Google Scholar 

  2. R. Sharma, S. Das, R. Tikekar, Gen. Relativ. Gravit. 47, 25 (2015)

    Google Scholar 

  3. L. Herrera, N.O. Santos, Phys. Rev. D70, 084004 (2004)

    Google Scholar 

  4. Martin Bojowald, Rituparno Goswami, Roy Maartens, Parampreet Singh, Phys. Rev. Lett. 95, 091302 (2005)

    Google Scholar 

  5. Rituparno Goswami, Pankaj S. Joshi, Parampreet Singh, Phys. Rev. Lett. 96, 031302 (2006)

    Google Scholar 

  6. C. Gundlach, Living Rev. Relativ. 2, 4 (1999)

    Google Scholar 

  7. R. Goswami, P.S. Joshi, Phys. Rev. D65, 027502 (2004)

    Google Scholar 

  8. R. Giambo, Class. Quantum Gravity 22, 2295 (2005)

    Google Scholar 

  9. J.Mendoza Hernández, M. Bellini, C.Moreno González, Phys. Dark Universe 23, 100251 (2019)

    Google Scholar 

  10. R.F. Baierlein, D.H. Sharp, J.A. Wheeler, Phys. Rev. 126, 1864 (1962)

    Google Scholar 

  11. J.A. Wheeler, Adv. Ser. Astrophys. Cosmol. 3, 27 (1987)

    Google Scholar 

  12. J.W. York, Phys. Rev. Lett. 16, 1082 (1972)

    Google Scholar 

  13. G.W. Gibbons, S.W. Hawking, Phys. Rev. D10, 2752 (1977)

    Google Scholar 

  14. L.S. Ridao, M. Bellini, Phys. Lett. B751, 565 (2015)

    Google Scholar 

  15. L.S. Ridao, M. Bellini, Astrophys. Space Sci. 357, 94 (2015)

    Google Scholar 

  16. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1973)

    Google Scholar 

  17. A. Palatini. Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43: 203–212 (1919). [English translation by R. Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]

  18. C. Rovelli, Living Rev. Relativ. 1, 1 (1998)

    Google Scholar 

  19. A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 21, R53–R152 (2004)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the CONACyT-UDG Network Project No. 294625 “Agujeros Negros y Ondas Gravitatorias”. M. B. acknowledges CONICET, Argentina (PIP 11220150100072CO) and UNMdP (EXA852/18) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Bellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, J.M., Bellini, M. & Moreno, C. Space-time waves from a collapse with a time-dependent cosmological parameter. Eur. Phys. J. Plus 135, 207 (2020). https://doi.org/10.1140/epjp/s13360-020-00243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00243-9

Navigation