Skip to main content

Advertisement

Log in

Highly porous film of TiO2 nanoparticles synthesized using carbon nanospheres for highly efficient dye-sensitized solar cells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Highly porous films of TiO2 nanoparticles were prepared by a doctor blade method using carbon nanospheres as a porosity enhancer. At first, carbon nanospheres with a diameter ranging from 100 to 600 nm were synthesized by a hydrothermal method; then, a paste of TiO2 nanoparticles was mixed with various amounts of carbon nanospheres. To obtain a porous TiO2 nanoparticles photoanode and removing carbon nanospheres, photoanode was sintered at a temperature of 500 °C. XRD patterns and Raman analysis revealed the anatase phase of TiO2 and show that the carbon spheres acted only as a porosity enhancer. Removing carbon nanospheres leads to the creation of cavities with various sizes in dye-sensitized solar cells (DSSCs). Under illumination, these random cavities increase porosity and light scattering of the photoanode which leads to a larger surface area for dye loading and improve light absorbance by dye N719 and consequently enhance the performance of DSSCs. For the optimum sample by mixing 3 wt% carbon nanospheres in the TiO2 pastes, the efficiency (η) and short-circuit current density (Jsc) were increased by 33% (from 5.72 to 7.59%) and 40% (from 12.59 to 17.73 mA cm−2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Pandey, M.S. Ahmad, N.A. Rahim, V.V. Tyagi, R. Saidur, Natural sensitizers and their applications in dye-sensitized solar cell, in Environmental Biotechnology: For Sustainable Future, ed. by R. Sobti, N. Arora, R. Kothari (Springer, Singapore, 2019), pp. 375–401. https://doi.org/10.1007/978-981-10-7284-0_15

    Chapter  Google Scholar 

  2. M. Amerioun, M. Ghazi, M. Izadifard, B. Bahramian, Eur. Phys. J. Plus 131, 113 (2016)

    Article  Google Scholar 

  3. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125, 475–482 (2003)

    Article  Google Scholar 

  4. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Nano Lett. 7, 3739–3746 (2007)

    Article  ADS  Google Scholar 

  5. W.-G. Yang, F.-R. Wan, Q.-W. Chen, J.-J. Li, D.-S. Xu, J. Mater. Chem. 20, 2870–2876 (2010)

    Article  Google Scholar 

  6. D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206–2210 (2009)

    Article  Google Scholar 

  7. X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Adv. Funct. Mater. 20, 509–515 (2010)

    Article  Google Scholar 

  8. Z. Lan, J. Wu, J. Lin, M. Huang, Sci. China Chem. 57, 888–894 (2014)

    Article  Google Scholar 

  9. K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, New J. Chem. 27, 783–785 (2003)

    Article  Google Scholar 

  10. L.R. Yadav, K. Manjunath, B. Archana, C. Madhu, H.R. Naika, H. Nagabhushana, C. Kavitha, G. Nagaraju, Eur. Phys. J. Plus 131, 154 (2016)

    Article  Google Scholar 

  11. J.B. Baxter, E.S. Aydil, Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)

    Article  Google Scholar 

  12. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, T. Sato, J. Am. Chem. Soc. 130, 11568–11569 (2008)

    Article  Google Scholar 

  13. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, H. Miguez, Adv. Mater. 21, 764–770 (2009)

    Article  Google Scholar 

  14. S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411–2418 (2008)

    Article  Google Scholar 

  15. B. Hua, Q. Lin, Q. Zhang, Z. Fan, Nanoscale 5, 6627–6640 (2013)

    Article  ADS  Google Scholar 

  16. A. Bayat, E. Saievar-Iranizad, J. Energy Chem. 27, 306–310 (2018)

    Article  Google Scholar 

  17. T.T. Pham, N. Mathews, Y.-M. Lam, S. Mhaisalkar, Phys. B: Condens. Matter 532, 225–229 (2018)

    Article  ADS  Google Scholar 

  18. X. He, X. Li, M. Zhu, J. Power Sources 333, 10–16 (2016)

    Article  ADS  Google Scholar 

  19. B. Tan, Y. Wu, J. Phys. Chem. B 110, 15932–15938 (2006)

    Article  Google Scholar 

  20. U. Akgul, Eur. Phys. J. Plus 134, 3 (2019)

    Article  Google Scholar 

  21. A. Bayat, E. Saievar-Iranizad, J. Alloys Compd. 755, 192–198 (2018)

    Article  Google Scholar 

  22. K.H. Kahradeh, E. Saievar-Iranizad, A. Bayat, Surf. Coat. Technol. 319, 318–325 (2017)

    Article  Google Scholar 

  23. M. Karimipour, M. Ebrahimi, Z. Abafat, M. Molaei, Opt. Mater. 57, 257–263 (2016)

    Article  ADS  Google Scholar 

  24. R.A. Kumar, V.V. Dutt, C. Rajesh, Eur. Phys. J. Plus 133, 60 (2018)

    Article  Google Scholar 

  25. K. Rahimi, A. Yazdani, M. Ahmadirad, Mater. Res. Bull. 98, 148–154 (2018)

    Article  Google Scholar 

  26. R. Sasikumar, T.-W. Chen, S.-M. Chen, S.-P. Rwei, S.K. Ramaraj, Opt. Mater. 79, 345–352 (2018)

    Article  ADS  Google Scholar 

  27. A. Bayat, E. Saievar-Iranizad, J. Lumin. 192, 180–183 (2017)

    Article  Google Scholar 

  28. X. He, J. Liu, M. Zhu, Y. Guo, Z. Ren, X. Li, Electrochim. Acta 255, 187–194 (2017)

    Article  Google Scholar 

  29. L. Que, Z. Lan, W. Wu, J. Wu, J. Lin, M. Huang, J. Power Sources 268, 670–676 (2014)

    Article  ADS  Google Scholar 

  30. L. Que, Z. Lan, W. Wu, J. Wu, J. Lin, M. Huang, J. Power Sources 266, 440–447 (2014)

    Article  ADS  Google Scholar 

  31. M. Samadpour, P.P. Boix, S. Giménez, A. Iraji Zad, N. Taghavinia, I. Mora-Seró, J. Bisquert, J. Phys. Chem. C 115, 14400–14407 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Council of the Tarbiat Modares University for financial supports. It is a pleasure to thank Sh. Dadgostar and F. Tajabadi for stimulating discussions. We also thank R. Mohammadpour and R. Ghahari for helpful hints. We are indebted to M. Samadpour for useful comments about EIS analysis. We are grateful to R. Poursalehi for reading the initial version of the manuscript and making useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Saievar-Iranizad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, A., Saievar-Iranizad, E., Bayatloo, E. et al. Highly porous film of TiO2 nanoparticles synthesized using carbon nanospheres for highly efficient dye-sensitized solar cells. Eur. Phys. J. Plus 135, 195 (2020). https://doi.org/10.1140/epjp/s13360-020-00241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00241-x

Navigation