Abstract
We study the thermodynamics of a dyonic AdS black hole surrounded by quintessence dark energy where negative cosmological constant of AdS space behaves as pressure of the black hole. We choose grand canonical ensemble of the black hole where its magnetic charge \(Q_{\mathrm{M}}\) and electric potential \(\Phi _{\mathrm{E}}\) are held as constant. Our goal in this work is to study the physical effects of the magnetic charge and electric potential on the thermodynamic phase transition of the black hole in the presence of quintessence dark energy. When barotropic index of the quintessence is \(\omega =-\frac{7}{9}\), we obtained that compressibility factor of the black hole reduces to \(Z_{\mathrm{c}}=\frac{3}{8}\) which corresponds to the van der Waals fluid. We obtained analogy between the small/large black hole phase transition and liquid/gas phase transition of the van der Waals fluid. Numerical calculations predict that the black hole may born plasma phase which is the fourth different state of the matter which does not appear in the van der Waals fluid.
This is a preview of subscription content, access via your institution.



References
R. Arnowitt, S. Deser, C.W. Misner, Canonical variables for general relativity. Phys. Rev. 117, 1595 (1960)
R. Arnowitt, S. Deser, C.W. Misner, Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997 (1961)
M. Henneaux, C. Teitelboim, Asymptotically anti-de Sitter spaces. Commun. Math. Phys. 98, 391 (1985)
S. Wang, S.-Q. Wu, F. Xie, L. Dan, The first law of thermodynamics of the (2+1)-dimensional BTZ black holes and Kerr–de Sitter spacetimes. Chin. Phys. Lett. 23, 1096 (2006)
Y. Sekiwa, Thermodynamics of de Sitter black holes: thermal cosmological constant. Phys. Rev. D 73, 084009 (2006)
K. Ball, Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. arXiv:math/9201205 [math.MG] (1991)
M. Cvetic, G. Gibbons, D. Kubiznak, C. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume. Phys. Rev. D 84, 024037 (2011)
B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Gravit. 28, 235017 (2011). arXiv:gr-qc/1106.6260
D. Kubiznak, R.B. Mann, P V criticality of charged AdS black holes. JHEP 2012, 033 (2012)
S. Dutta, A. Jain, R. Soni, Dyonic black hole and holography. JHEP 2013, 60 (2013). arXiv:hep-th/1310.1748
X.X. Zeng, L.F. Li, Van der Waals phase transition in the framework of holography. arXiv:hep-th/1512.08855 (2017)
S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008). arXiv:hep-th/0803.3295
S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, JHEP. 0812, 015 (2008). arXiv:hep-th/0810.1563
S.A. Hartnoll, P. Kovtun, Phys. Rev. D 76, 066001 (2007). arXiv:hep-th/0704.1160
M.M. Caldarelli, O.J.C. Dias, D. Klemm, JHEP 0903, 025 (2009). arXiv:hep-th/0812.0801
S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Phys. Rev. B 76, 144502 (2007)
N.A. Bachall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999)
S.J. Perlmutter et al., Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)
V. Sahni, A.A. Starobinsky, The case for a positive cosmological lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)
Shinji Tsujikawa, Quintessence: a review. Class. Quant. Gravit. 30, 214003 (2013)
L.H. Ford, Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35, 2339 (1987)
Y. Fujii, Origin of the gravitational constant and particle masses in a scale invariant scalar-tensor theory. Phys. Rev. D 26, 2580 (1982)
V.V. Kiselev, Quintessence and black holes. Class. Quant. Gravit. 20, 1187 (2003). arXiv:gr-qc/0210040
Y. Zhang, Y.X. Gui, F.L. Li, Quasinormal modes of a Schwarzschild black hole surrounded by quintessence: electromagnetic perturbations. Gen. Relat. Gravit. 39, 1003 (2007)
N. Varghese, V.C. Kuriakose, Massive charged scalar quasinormal modes of Reissner–Nordstrom black hole surrounded by quintessence. Gen. Relat. Gravit. 41, 1249 (2009)
S. Chen, Q. Pan, J. Jing, Holographic superconductors in quintessence AdS black hole spacetime. Class. Quant. Gravit. 30, 145001 (2013)
R.H. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics (Oxford University Press, Oxford, 2012)
P.H. Nguyen, An equal area law for holographic entanglement entropy of the AdS-RN black hole. JHEP 12, 139 (2015). arXiv:hep-th/1508.01955
G.Q. Li, Effects of dark energy on P-V criticality of charged AdS black holes. Phys. Lett. B 06, 260 (2014). arXiv:gr-qc/1407.0011
H. Liu, X.H. Meng, Effects of dark energy on the efficiency of charged AdS black holes as heat engine. Eur. Phys. J. C 77, 556 (2017). arXiv:hep-th/1704.04363v4
J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333 (1973)
E. Papantonopoulos, Physics of Black Holes, vol. 769, Lecture Notes in Physics (Springer, Berlin, 2009)
B. DeMarco, J. Bohn, E. Cornell, Pioneer of ultracold quantum physics. Nature 538, 318 (2006)
C.A. Regal, M. Greiner, D.S. Jin, Observation of resonance condensation of Fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghaffarnejad, H., Yaraie, E. & Farsam, M. Thermodynamic phase transition for quintessence dyonic anti-de Sitter black holes. Eur. Phys. J. Plus 135, 179 (2020). https://doi.org/10.1140/epjp/s13360-020-00211-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-020-00211-3