The classical and quantum synchronization between two scattering modes in Bose–Einstein condensates


The classical and quantum synchronization between two nonlinear mechanical modes of Bose–Einstein condensates is investigated by different types of measures in order to reveal macroscopic and microscopic properties of synchronized behaviors in a closed quantum system. The classical measure synchronization (CMS) is studied by Pearson correlation coefficient, the orbital overlapping and covering areas in the phase space based on mean-value dynamical equations. The dynamical transitions of CMS are analyzed with phase diagrams in the parametric plane of population imbalance and phase difference between two modes in a wide range of mode coupling rate. Based on Husimi Q functions, the synchronized behaviors of quantum measure synchronization (QMS) are displayed by density overlapping and correlated probability dynamics in phase space, and further investigated by two quantum measures: Mari measure and mutual information. These results demonstrate that the “revival and collapse” of quantum fluctuations beyond mean-value dynamics discriminates QMS from CMS. The overwhelming dynamics of error fluctuations not only excludes complete CMS and perfect phase overlap in QMS, but also leads to upper bound to Mari measure and unceasing oscillations of mutual information. We reveal that the correlation between Mari measure and mutual information for QMS is derived from the similar dynamics of error fluctuations with respect to their opposite mean-value behaviors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    H. Wiseman, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  3. 3.

    M. Bagheri, M. Poot, M. Li, W.P.H. Pernice, H.X. Tang, Nat. Nanotechnol. 6, 726 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    S.B. Shim, M. Imboden, P. Mohanty, Science 316, 95 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    L. Ying, Y.C. Lai, C. Grebogi, Phys. Rev. A 90, 053810 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    P.P. Orth, D. Roosen, W. Hofstetter, K.L. Hur, Phys. Rev. B 82, 144423 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    M.R. Hush, Weibin Li, Sam Genway, Igor Lesanovsky, Andrew D. Armour, Phys. Rev. A 91, 061401(R) (2015)

    ADS  Article  Google Scholar 

  8. 8.

    C.A. Holmes, C.P. Meaney, G.J. Milburn, Phys. Rev. E 85, 066203 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    K. Shlomi, D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, E. Buks, Phys. Rev. E 91, 032910 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Phys. Rev. Lett. 107, 043603 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Phys. Rev. Lett. 109, 233906 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    H. Moritz, T. Stöferle, M. Köhl, T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    F. Brennecke, F. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    A. Mari, A. Farace, N. Didier, V. Giovannetti, R. Fazio, Phys. Rev. Lett. 111, 103605 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, R. Fazio, Phys. Rev. A 91, 012301 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, P. Hänggi, Phys. Rev. Lett. 97, 210601 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    O.V. Zhirov, D.L. Shepelyansky, Phys. Rev. Lett. 100, 014101 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    D.K. Agrawal, J. Woodhouse, A.A. Seshia, Phys. Rev. Lett. 111, 084101 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    T.E. Lee, H.R. Sadeghpour, Phys. Rev. Lett. 111, 234101 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    M.H. Matheny, Matt Grau, L.G. Villanueva, R.B. Karabalin, M.C. Cross, M.L. Roukes, Phys. Rev. Lett. 112, 014101 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    S. Walter, A. Nunnenkamp, C. Bruder, Phys. Rev. Lett. 112, 094102 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    J. Gieseler, M. Spasenović, L. Novotny, R. Quidant, Phys. Rev. Lett. 112, 103603 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Phys. Rev. A 85, 052101 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    G.M. Xue, M. Gong, H.K. Xu, W.Y. Liu, H. Deng, Y. Tian et al., Phys. Rev. B 90, 224505 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    Weiping Zhang, D.F. Walls, Phys. Rev. A 52, 4696 (1995)

    ADS  Article  Google Scholar 

  26. 26.

    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2009)

    MATH  Google Scholar 

  27. 27.

    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  28. 28.

    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    A. Hampton, D.H. Zanette, Phys. Rev. Lett. 83, 2179 (1999)

    ADS  Article  Google Scholar 

  30. 30.

    H. Qiu, B. Juliá-Díaz, M.A. Garcia-March, A. Polls, Phys. Rev. A 90, 033603 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    G. Manzano, F. Galve, G.L. Giorgi, E. Hernández-García, R. Zambrini, Sci. Rep. 3, 1439 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    Lin Zhang, Appl. Phys. B Lasers Opt. 111, 195 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    ADS  Article  Google Scholar 

  34. 34.

    U.E. Vincent, New J. Phys. 7, 209 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    F. Galve, G.L. Giorgi, R. Zambrini, Lectures on General Quantum Correlations and their Applications (Springer, Berlin, 2017), pp. 393–420

    Book  Google Scholar 

  36. 36.

    Wen-Yuan Wang, Jie Liu, Fu Li-Bin, Phys. Rev. A 92, 053608 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    Jing Tian, Haibo Qiu, Guanfang Wang, Yong Chen, Fu Li-bin, Phys. Rev. E 88, 032906 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    W. Barth, R.S. Martin, J.H. Wilkinson, Numer. Math. 9, 386 (1967)

    MathSciNet  Article  Google Scholar 

  39. 39.

    G. Kirchmair, B. Vlastakis, Z. Leghtas, S.E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 495, 205 (2013)

    ADS  Article  Google Scholar 

Download references


We are thankful to Keye Zhang for the useful discussions and suggestions. This work is supported by the National Natural Science Foundation of China (Grants Nos. 11447025 and 11234003) and the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604.

Author information



Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, X. & Zhang, W. The classical and quantum synchronization between two scattering modes in Bose–Einstein condensates. Eur. Phys. J. Plus 135, 202 (2020).

Download citation