Skip to main content

The U/Th production ratio from extended independent model

Abstract

The Meyer and Schramm (M&S) independent model formalism is developed to determine the production ratio of actinide chronometers in the nucleosynthesis era of the Galaxy formation. The production ratio of U/Th is calculated, considering the non-radioactive mass reduction rate of chronometers together with a new production of r-process nuclides over the time interval between the last r-process event and the solidification of meteorites. In the first approach, we considered two extra terms rather than M&S formalism, and the average U/Th production ratio over the duration of nucleosynthesis in stars and supernovas was measured to be \( 0.5378 \pm_{0.0005}^{0.0006} \) and \( 0.5942_{ - 0.0474}^{ + 0.0491} \). Considering only one extra term rather than M&S original model led to the average production ratio of \( 0.5603 \pm 0.0007 \) and \( 0.5994 \pm_{0.0472}^{0.0487} \). The calculated results from both approaches are compatible with those of used stellar models and chronometric methods. The advantages of our extended model are in precise determining of actinides production ratios and evaluating a narrow down range for the Galaxy age rather than M&S formalism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    N. Dauphas, Nature 435(7046), 1203 (2005)

    Google Scholar 

  2. 2.

    P. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont et al., Astron. Astrophys. 594, A20 (2016)

    Google Scholar 

  3. 3.

    K. Hotokezaka, P. Beniamini, T. Piran, Int. J. Mod. Phys. D 27(13), 1842005 (2018)

    Google Scholar 

  4. 4.

    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Elsevier, Amsterdam, 2012)

    Google Scholar 

  5. 5.

    R.A. Malaney, W.A. Fowler, Mon. Not. R. Astron. Soc. 237(1), 67–79 (1989)

    Google Scholar 

  6. 6.

    J.J. Cowan, B. Pfeiffer, K.-L. Kratz, F.-K. Thielemann, C. Sneden, S. Burles et al., Astrophys. J. 521(1), 194 (1999)

    Google Scholar 

  7. 7.

    K. Otsuki, G.J. Mathews, T. Kajino, New Astron. 8(8), 767–776 (2003)

    Google Scholar 

  8. 8.

    J.-M. Luck, J.-L. Birck, C.-J. Allegre, Nature 283(5744), 256 (1980)

    Google Scholar 

  9. 9.

    W. Fowler, Q. J. R. Astron. Soc. 28, 87–108 (1987)

    Google Scholar 

  10. 10.

    V. Hill, B. Plez, R. Cayrel, T. Beers, B. Nordström, J. Andersen et al., Astron. Astrophys. 387(2), 560–579 (2002)

    Google Scholar 

  11. 11.

    R. Cayrel, V. Hill, T. Beers, B. Barbuy, M. Spite, F. Spite et al., Nature 409(6821), 691 (2001)

    Google Scholar 

  12. 12.

    H. Schatz, R. Toenjes, B. Pfeiffer, T.C. Beers, J.J. Cowan, V. Hill et al., Astrophys. J. 579(2), 626 (2002)

    Google Scholar 

  13. 13.

    J.J. Cowan, F.-K. Thielemann, J.W. Truran, Phys. Rep. 208(4–5), 267–394 (1991)

    Google Scholar 

  14. 14.

    J. Lippuner, R. Fernandez, L. Roberts, F. Foucart, D. Kasen, B. Metzger, Presented at the APS April Meeting Abstracts, 2017 (unpublished)

  15. 15.

    E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato, S. Campana et al., Nature 551(7678), 67 (2017)

    Google Scholar 

  16. 16.

    B.E. Pagel, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  17. 17.

    S. Goriely, M. Arnould, Astron. Astrophys. 379(3), 1113–1122 (2001)

    Google Scholar 

  18. 18.

    E. Symbalisty, D. Schramm, Rep. Prog. Phys. 44(3), 293 (1981)

    Google Scholar 

  19. 19.

    F. Matteucci, The Chemical Evolution of the Galaxy (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  20. 20.

    B.S. Meyer, D.N. Schramm, Astrophys. J. 311(FERMILAB-PUB-86-071-A), 406–417 (1986)

    Google Scholar 

  21. 21.

    B.-H. Sun, Z.-M. Niu, Relativistic Density Functional for Nuclear Structure, vol. 10 (World Scientific, Singapore, 2016), pp. 561–623

    Google Scholar 

  22. 22.

    J. Truran, Proc. Natl. Acad. Sci. 95(1), 18–21 (1998)

    Google Scholar 

  23. 23.

    M. Eskandari, M. Bahadoran, Iran. J. Sci. Technol. (Sciences) 33(3), 225–233 (2009)

    Google Scholar 

  24. 24.

    J. Silk, Presented at the Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016), 2017 (unpublished)

  25. 25.

    F. De Bernardis, A. Melchiorri, L. Verde, R. Jimenez, J. Cosmol. Astropart. Phys. 2008(03), 020 (2008)

    Google Scholar 

  26. 26.

    C. Rangacharyulu, Physics of Nuclear Radiations: Concepts, Techniques and Applications (CRC Press, Boca Roton, 2013)

    Google Scholar 

  27. 27.

    C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon et al., Astrophys. J. Suppl. Ser. 148(1), 1 (2003)

    Google Scholar 

  28. 28.

    D.N. Spergel, R. Bean, O. Doré, M. Nolta, C. Bennett, J. Dunkley et al., Astrophys. J. Suppl. Ser. 170(2), 377 (2007)

    Google Scholar 

  29. 29.

    H.E. Bond, E.P. Nelan, D.A. VandenBerg, G.H. Schaefer, D. Harmer, Astrophys. J. Lett. 765(1), L12 (2013)

    Google Scholar 

  30. 30.

    A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich et al., Astron. J. 116(3), 1009 (1998)

    Google Scholar 

  31. 31.

    S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent, P. Castro et al., Astrophys. J. 517(2), 565 (1999)

    Google Scholar 

  32. 32.

    B. Côté, M. Lugaro, R. Reifarth, M. Pignatari, B. Világos, A. Yagüe et al., Astrophys. J. 878(2), 156 (2019)

    Google Scholar 

  33. 33.

    D.D. Clayton, Mon. Not. R. Astron. Soc. 234(1), 1–36 (1988)

    Google Scholar 

  34. 34.

    S. Wanajo, N. Itoh, Y. Ishimaru, S. Nozawa, T.C. Beers, Astrophys. J. 577(2), 853 (2002)

    Google Scholar 

  35. 35.

    J.J. Cowan, C. Sneden, S. Burles, I.I. Ivans, T.C. Beers, J.W. Truran et al., Astrophys. J. 572(2), 861 (2002)

    Google Scholar 

  36. 36.

    B. Pfeiffer, K. Kratz, F. Thielemann, Zeitschrift für Phys. A Hadrons.Nucl. 357(3), 235–238 (1997)

    Google Scholar 

Download references

Acknowledgements

I. S. Amiri would like to acknowledge for the research facilities of Ton Duc Thang University, Vietnam.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahadoran, M., Amiri, I.S. The U/Th production ratio from extended independent model. Eur. Phys. J. Plus 135, 205 (2020). https://doi.org/10.1140/epjp/s13360-020-00107-2

Download citation