Skip to main content
Log in

Temperature evolution of ions in a Paul trap driven by various radio-frequency waveforms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, temperature evolution of an ion ensemble in a three-dimensional quadrupole ion trap is explored. Four different radio-frequency (RF) waveforms have been used to drive the trap. It has been found that for the given period of the RF waveforms (rectangular, sine, triangular, and sawtooth), there have been obtained various ion temperatures for each waveform. The temperature evolution of ions was obtained using by the PyDIT code. Trapped ion temperature is affected by the motion of ions which consist of secular motion and micro-motion. It was found that temperature of ion ensemble is different at each of the four waveforms. This kind of investigation might be useful to select one of these RF waveforms which would be appropriate for specific applications. Furthermore, various octopole field contributions, and nonlinear Mathieu parameter (q), and initial condition effects on the ion ensemble temperature have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.F. Brabeck, P.T.A. Reilly, Development of MS\(^{n}\) in digitally operated linear ion guides. J. Am. Soc. Mass Spectrom. 27, 1122–1127 (2016)

    Article  ADS  Google Scholar 

  2. A. Whitaker, The New Quantum Age (Oxford University Press, Oxford, 2012), pp. 230–231

    Google Scholar 

  3. R.E. March, An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)

    Article  ADS  Google Scholar 

  4. M.P. Boone, S.A. McLuckey, Dipolar DC collisional activation in a stretched 3-D ion trap: the effect of higher order fields on RF-heating. J. Am. Soc. Mass Spectrom. 23, 736–744 (2012)

    Article  Google Scholar 

  5. W. Ertmer, Laser cooling and storage of free atoms. Physica Scripta 36, 306–314 (1987)

    Article  ADS  Google Scholar 

  6. H. Aksakal, Ion dynamics in a Paul trap driven by various radio frequency waveforms. Int. J. Mass Spectrom. 394, 22–30 (2016)

    Article  Google Scholar 

  7. C.B. Zhang, D. Offenberg, B. Roth, M.A. Wilson, S. Schiller, Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap. Phys. Rev. A 76, 012719–012727 (2007)

    Article  ADS  Google Scholar 

  8. Q. Dang, F. Xu, X. Huang, X. Fang, R. Wang, C.F. Ding, Linear ion trap with added octopole field component: the property and method stability analysis. J. Mass Spectrom. 50, 1400–1408 (2015)

    Article  ADS  Google Scholar 

  9. B. Steffi, G. Marx, L. Schweikhard, The stability diagram of the digital ion trap. Int. J. Mass Spectrom. 336, 47–52 (2013)

    Article  Google Scholar 

  10. L. Ding, M. Sudakov, S. Kumashiro, A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom. 221, 117–124 (2002)

    Article  Google Scholar 

  11. Steffi Bandelow, Gerrit Marx, Lutz Schweikhard, The 3-state digital ion trap. Int. J. Mass Spectrom. 353, 49–53 (2013)

    Article  Google Scholar 

  12. L. Ding, S. Kumashiro, Ion motion in the rectangular wave quadrupole field and digital operation mode of a quadrupole ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 20, 3–8 (2006)

    Article  ADS  Google Scholar 

  13. C. Champenois, About the dynamics and thermodynamics of trapped ions. J. Phys. B At. Mol. Opt. Phys. 42, 154002–154012 (2009)

    Article  ADS  Google Scholar 

  14. A. Kellerbauer, T. Kim, R.B. Moore, P. Varfalvy, Buffer gas cooling of ion beams. Nucl. Instrum. Methods Phys. Res. A 469, 276–280 (2001)

    Article  ADS  Google Scholar 

  15. D.J. Wineland, J.C. Bergquist, M.I. Wayne, J.J. Bollinger, C.H. Manney, Atomic-ion coulomb clusters in an ion trap. Phys. Rev. Lett. 59, 2935–2938 (1987)

    Article  ADS  Google Scholar 

  16. S. Gronert, Estimation of effective ion temperatures in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 845–851 (1998)

    Article  Google Scholar 

  17. C. Liang, L. She, L. Jiao-Mei, G. Ke-Lin, Kinetiv energy of trapped ions cooled by buffer gas. Chin. Phys. Lett. 27(6), 063201–063211 (2010)

    Article  ADS  Google Scholar 

  18. R.E. March, J.F. Todd, Practical Aspects of Trapped Ion Mass Spectrometry (CRC Press, Boca Raton, 2010), pp. 143–163

    Book  Google Scholar 

  19. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83(10), 5025–5033 (1998)

    Article  ADS  Google Scholar 

  20. M.M. Bogdan, G.G. Visan, Nonlinear ion trap stability analysis. Phys. Scr. 2010, 014057 (2010)

    Google Scholar 

  21. B.B. Blinov, R.N. Kohn, M.J. Madsen, P. Maunz, D.L. Moehring, C. Monroe, Broadband laser cooling of trapped atoms with ultrafast pulses. J. Opt. Soc. Am. B. 23, 1170–1173 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to M. Zait Balikci, Dr. Gökhan Ünel, and Dr. Ahmet Bingül for their remarks on this manuscript, and H. Aksakal thanks to Mahmut Cavdar for the improvement of the PyDIT code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüsnü Aksakal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksakal, H., Mercanli, A.S. Temperature evolution of ions in a Paul trap driven by various radio-frequency waveforms. Eur. Phys. J. Plus 135, 76 (2020). https://doi.org/10.1140/epjp/s13360-019-00082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00082-3

Navigation