Skip to main content
Log in

Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This research investigates transient vibrational characteristics of a porous functionally graded cylindrical nanoshell under different impulsive loadings with the use of nonlocal strain gradient theory (NSGT). Based on NSGT, two size parameters accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Impulse forces have three forms of triangular, rectangular and sinusoidal. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.L. Ke, Y.S. Wang, Z.D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6), 2038–2047 (2012)

    Google Scholar 

  2. Boutaleb et al., Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv. Nano Res. 7(3), 189–206 (2019)

    Google Scholar 

  3. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Draoui et al., Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J. Nano Res. 57, 117–135 (2019)

    Google Scholar 

  5. Bellifa et al., A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech. 62(6), 695–702 (2017)

    Google Scholar 

  6. Cherif et al., Vibration analysis of nano beam using differential transform method including thermal effect. J. Nano Res. 54, 1–14 (2018)

    Google Scholar 

  7. Semmah et al., Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv. Nano Res. 7(2), 89–98 (2019)

    Google Scholar 

  8. Karami et al., Wave propagation of functionally graded anisotropic nanoplates resting on Winkler–Pasternak foundation. Struct. Eng. Mech. 7(1), 55–66 (2019)

    Google Scholar 

  9. Bounouara et al., A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Google Scholar 

  10. D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    ADS  MATH  Google Scholar 

  11. L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    MathSciNet  MATH  Google Scholar 

  12. F. Ebrahimi, M.R. Barati, Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)

    Google Scholar 

  13. X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Google Scholar 

  14. F. Ebrahimi, M.R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)

    Google Scholar 

  15. Karami et al., Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos. Struct. 25(3), 361–374 (2017)

    Google Scholar 

  16. M.R. Barati, N.M. Faleh, A.M. Zenkour, Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory. Mech. Adv. Mater. Struct. 2, 1–9 (2018)

    Google Scholar 

  17. M.S.A. Houari, A. Bessaim, F. Bernard, A. Tounsi, S.R. Mahmoud, Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter. Steel. Compos. Struct. 28(1), 13–24 (2018)

    Google Scholar 

  18. F. Ebrahimi, M.R. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Google Scholar 

  19. M.H. Ghayesh, A. Farajpour, Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects. Mech. Adv. Mater. Struct. 20, 1–10 (2018)

    Google Scholar 

  20. Y. Tang, T. Yang, Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018)

    Google Scholar 

  21. Y. Tang, X. Lv, T. Yang, Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration. Compos. B Eng. 156, 319–331 (2019)

    Google Scholar 

  22. G.L. She, F.G. Yuan, Y.R. Ren, H.B. Liu, W.S. Xiao, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos. Struct. 203, 614–623 (2018)

    Google Scholar 

  23. F. Ebrahimi, M. Mokhtari, Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J. Braz. Soc. Mech. Sci. Eng. 37(4), 1435–1444 (2015)

    Google Scholar 

  24. N. Shafiei, A. Mousavi, M. Ghadiri, On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int. J. Eng. Sci. 106, 42–56 (2016)

    MATH  Google Scholar 

  25. H.A. Atmane, A. Tounsi, F. Bernard, S.R. Mahmoud, A computational shear displacement model for vibrational analysis of functionally graded beams with porosities. Steel Compos. Struct. 19(2), 369–384 (2015)

    Google Scholar 

  26. S.S. Mirjavadi, B.M. Afshari, N. Shafiei, A.M.S. Hamouda, M. Kazemi, Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams. Steel Compos. Struct. 25(4), 415–426 (2017)

    Google Scholar 

  27. N.M. Faleh, R.A. Ahmed, R.M. Fenjan, On vibrations of porous FG nanoshells. Int. J. Eng. Sci. 133, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  28. N.M. Faleh, R.M. Fenjan, R.A. Ahmed, Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads. Eur. Phys. J. Plus 133(9), 348 (2018)

    Google Scholar 

  29. L. Li, H. Tang, Y. Hu, Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018)

    Google Scholar 

  30. F. Mehralian, Y.T. Beni, M.K. Zeverdejani, Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Phys. B 514, 61–69 (2017)

    ADS  Google Scholar 

  31. K. Mohammadi, M. Mahinzare, K. Ghorbani, M. Ghadiri, Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst. Technol. 24(2), 1133–1146 (2018)

    Google Scholar 

  32. M.R. Barati, Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta Mech. 229(3), 1183–1196 (2018)

    MathSciNet  MATH  Google Scholar 

  33. B. Karami, M. Janghorban, A. Tounsi, Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–264 (2018)

    Google Scholar 

  34. Y. Qu, S. Wu, H. Li, G. Meng, Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: beams, plates and solids. Compos. B Eng. 73, 96–110 (2015)

    Google Scholar 

  35. Medani et al., Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate. Steel Compos. Struct. 32(5), 595–610 (2019)

    Google Scholar 

  36. Ait Atmane et al., Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 13(1), 71–84 (2017)

    ADS  Google Scholar 

  37. Zine et al., A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos. Struct. 26(2), 125–137 (2018)

    Google Scholar 

  38. Zarga et al., Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos. Struct. 32(3), 389–410 (2019)

    Google Scholar 

  39. Chaabane et al., Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Struct. Eng. Mech. 71(2), 185–196 (2019)

    Google Scholar 

  40. Boukhlif et al., A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos. Struct. 31(5), 503–516 (2019)

    Google Scholar 

  41. Bourada et al., Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory. Wind Struct. 28(1), 19–30 (2019)

    MathSciNet  Google Scholar 

  42. Boulefrakh et al., The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech. Eng. 18(2), 161–178 (2019)

    Google Scholar 

  43. Meksi et al., An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J. Sandw. Struct. Mater. 21(2), 727–757 (2019)

    Google Scholar 

  44. Bakhadda et al., Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind Struct. 27(5), 311–324 (2018)

    Google Scholar 

  45. Younsi et al., Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates. Geomech. Eng. 14(6), 519–532 (2018)

    Google Scholar 

  46. Abdelaziz et al., An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos. Struct. 25(6), 693–704 (2017)

    MathSciNet  Google Scholar 

  47. Y.S. Lee, K.D. Lee, On the dynamic response of laminated circular cylindrical shells under impulse loads. Comput. Struct. 63(1), 149–157 (1997)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Sajad Mirjavadi.

Appendix

Appendix

$$ k_{1,1} = A_{11} \left( {\varPsi_{31} - l^{2} \left( {\varPsi_{51} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{31} } \right)} \right) - n^{2} \frac{{A_{66} }}{{R^{2} }}\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), $$
(44)
$$\begin{aligned} & k_{2,1} = n\left( {\frac{{A_{12} }}{R} + \frac{{A_{66} }}{R}} \right)\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\\ & \qquad \;k_{1,2} = - n\left( {\frac{{A_{12} }}{R} + \frac{{A_{66} }}{R}} \right)\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right),\end{aligned} $$
(45)
$$ k_{3,1} = + \frac{{A_{12} }}{R}\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), \;k_{1,3} = - \frac{{A_{12} }}{R}\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right), $$
(46)
$$ \begin{aligned} k_{4,1} = & + B_{11} \left( {\varPsi_{31} - l^{2} \left( {\varPsi_{51} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{31} } \right)} \right) - n^{2} \frac{{B_{66} }}{{R^{2} }}\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), \\ k_{1,4} = & B_{11} \left( {\varPsi_{31} - l^{2} \left( {\varPsi_{51} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{31} } \right)} \right) - n^{2} \frac{{B_{66} }}{{R^{2} }}\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), \\ \end{aligned} $$
(47)
$$ \begin{aligned} & k_{5,1} = n\left( {\frac{{B_{12} }}{R} + \frac{{B_{66} }}{R}} \right)\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\\ & \qquad \;k_{1,5} = - n\left( {\frac{{B_{66} }}{R} + \frac{{B_{12} }}{R}} \right)\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right),\end{aligned} $$
(48)
$$\begin{aligned} & k_{2,2} = A_{66} \left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right) - n^{2} \frac{{A_{11} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right) \\ & \qquad - \frac{{\tilde{A}_{66} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\end{aligned} $$
(49)
$$\begin{aligned} & k_{3,2} = - n\left( {\frac{{A_{11} }}{{R^{2} }} + \frac{{\tilde{A}_{66} }}{{R^{2} }}} \right)\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\\ & \qquad \;k_{2,3} = - n\left( {\frac{{\tilde{A}_{66} }}{{R^{2} }} + \frac{{A_{11} }}{{R^{2} }}} \right)\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\end{aligned} $$
(50)
$$\begin{aligned} & k_{4,2} = - n\left( {\frac{{B_{12} }}{R} + \frac{{B_{66} }}{R}} \right)\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right),\\ & \qquad \;k_{2,4} = + n\left( {\frac{{B_{12} }}{R} + \frac{{B_{66} }}{R}} \right)\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\end{aligned} $$
(51)
$$\begin{aligned} k_{5,2} &= B_{66} \left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right) - n^{2} \frac{{B_{11} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right)\\ & \quad + \frac{{\tilde{A}_{66} }}{R}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right),} \right)\end{aligned} $$
(52)
$$\begin{aligned} k_{3,3} &= \tilde{A}_{66} \left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}}}}\varPsi_{20} } \right)} \right) - n^{2} \frac{{\tilde{A}_{66} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right) \\ & \quad- \frac{{A_{11} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\end{aligned}$$
(53)
$$\begin{aligned} & k_{4,3} = \left( {\tilde{A}_{66} - \frac{{B_{12} }}{R}} \right)\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right),\\ & \qquad\;k_{3,4} = + \left( {\frac{{B_{12} }}{R} - \tilde{A}_{66} } \right)\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\end{aligned} $$
(54)
$$\begin{aligned} & k_{5,3} = n\left( { + \frac{{\tilde{A}_{66} }}{R} - \frac{{B_{11} }}{{R^{2} }}} \right)\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\\ & \qquad \;k_{3,5} = - n\left( { + \frac{{B_{11} }}{{R^{2} }} - \frac{{\tilde{A}_{66} }}{R}} \right)\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\end{aligned} $$
(55)
$$\begin{aligned} k_{4,4} & = + D_{11} \left( {\varPsi_{31} - l^{2} \left( {\varPsi_{51} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{31} } \right)} \right) - n^{2} \frac{{D_{66} }}{{R^{2} }}\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right)\\ &\quad - \tilde{A}_{66} \left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\end{aligned} $$
(56)
$$\begin{aligned} & k_{5,4} = + n\left( {\frac{{D_{12} }}{R} + \frac{{D_{66} }}{R}} \right)\left( {\varPsi_{11} - l^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\\ & \qquad\;k_{4,5} = - n\left( {\frac{{D_{66} }}{R} + \frac{{D_{12} }}{R}} \right)\left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right),\end{aligned} $$
(57)
$$\begin{aligned} k_{5,5}& = + D_{66} \left( {\varPsi_{20} - l^{2} \left( {\varPsi_{40} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{20} } \right)} \right) - n^{2} \frac{{D_{11} }}{{R^{2} }}\left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right)\\ & \quad - \tilde{A}_{66} \left( {\varPsi_{00} - l^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right),\end{aligned} $$
(58)
$$ m_{1,1} = + I_{0} \left( {\varPsi_{11} - ea^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), $$
(59)
$$ m_{2,2} = m_{3,3} = m_{5,5} = + I_{0} \left( {\varPsi_{00} - ea^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right), $$
(60)
$$ m_{4,4} = + I_{2} \left( {\varPsi_{11} - ea^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right), $$
(61)
$$ m_{4,1} = + I_{1} \left( {\varPsi_{11} - ea^{2} \left( {\varPsi_{31} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{11} } \right)} \right),\;m_{5,2} = m_{2,5} = + I_{1} \left( {\varPsi_{00} - ea^{2} \left( {\varPsi_{20} - \frac{{n^{2} }}{{R^{{}} }}\varPsi_{00} } \right)} \right), $$
(62)
$$ Q_{\text{dynamic}} = Q_{n} \varPsi_{00} , $$
(63)

in which

$$ \varPsi_{00} = \int_{0}^{L} {F_{m} } F_{m} {\text{d}}x, $$
(64)
$$ \varPsi_{20} = \int_{0}^{L} {\frac{{{\text{d}}^{2} F_{m}^{{}} }}{{{\text{d}}x^{2} }}} F_{m} {\text{d}}x, $$
(65)
$$ \varPsi_{11} = \int_{0}^{L} {\frac{{{\text{d}}F_{m}^{{}} }}{{{\text{d}}x}}} \frac{{{\text{d}}F_{m}^{{}} }}{{{\text{d}}x}}{\text{d}}x, $$
(66)
$$ \varPsi_{31} = \int\limits_{0}^{L} {\frac{{{\text{d}}^{3} F_{m}^{{}} }}{{{\text{d}}x^{3} }}} \frac{{{\text{d}}F_{m}^{{}} }}{{{\text{d}}x}}{\text{d}}x, $$
(67)
$$ \varPsi_{40} = \int_{0}^{L} {\frac{{{\text{d}}^{4} F_{m}^{{}} }}{{{\text{d}}x^{4} }}} F_{m} {\text{d}}x, $$
(68)
$$ \varPsi_{51} = \int_{0}^{L} {\frac{{{\text{d}}^{5} F_{m}^{{}} }}{{{\text{d}}x^{5} }}} \frac{{{\text{d}}F_{m}^{{}} }}{{{\text{d}}x}}{\text{d}}x, $$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsat, M., Badnava, S., Mirjavadi, S.S. et al. Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory. Eur. Phys. J. Plus 135, 81 (2020). https://doi.org/10.1140/epjp/s13360-019-00042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00042-x

Navigation