Skip to main content

Design of an accelerator-driven subcritical dual fluid reactor for transmutation of actinides

Abstract.

An accelerator-driven subcritical dual fluid reactor (AD-DFR), which is a hybrid core operated by a high power accelerator, is designed for the transmutation of minor actinides. The subcritical core is dual in the sense that a lead-bismuth-eutectic-cooled fast reactor (LFR) is combined with a molten salt reactor (MSR). Thus, the core has two loops: one for the liquid metal coolant and the other for the molten salt fuel. The combination of LFR and MSR can take advantages of both reactor types. A subcritical core allows for loading a high fraction of minor actinides in fuels. An 800MW_t AD-DFR can transmute minor actinides approximately 120kg/year with only the maximum beam power of 13MW.

This is a preview of subscription content, access via your institution.

References

  1. H. Nifenecker, O. Meplan, S. David, C. R. Acad. Sci. IV 2, 163 (2001)

    Google Scholar 

  2. C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fiétier, J. Gálvez, C. Gelès, Y. Kadi, R. Klapisch, P. Mandrillon, Tech. Rep. AT/95-44 (ET) (CERN, Geneva, 1995)

  3. L. Cinotti, B. Giraud, H.A. Abderrahim, J. Nucl. Mater. 335, 148 (2004)

    Article  ADS  Google Scholar 

  4. K. Tsujimoto, T. Sasa, K. Nishihara, H. Oigawa, H. Takano, J. Nucl. Sci. Technol. 41, 21 (2004)

    Article  Google Scholar 

  5. H.A. Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, Energy Convers. Manag. 63, 4 (2012)

    Article  Google Scholar 

  6. Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Ann. Nucl. Energy 87, 511 (2016)

    Article  Google Scholar 

  7. J.S. Fraser, IEEE Trans. Nucl. Sci. NS-24, 1611 (1977)

    Article  ADS  Google Scholar 

  8. K. Tsukada, J. At. Energy Soc. Jpn. 20, 1 (1978)

    Article  Google Scholar 

  9. K. Furukawa, H. Ohno, J. Mochinaga, K. Igarashi, J. Nucl. Sci. Technol. 17, 562 (1980)

    Article  Google Scholar 

  10. C.D. Bowman, E.D. Arthur, P.W. Lisowski, Nucl. Instrum. Methods Phys. Res. Sect. A 320, 336 (1992)

    Article  ADS  Google Scholar 

  11. C.D. Bowman, Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project, in The International Conference on Accelerator-Driven Transmutation Technologies and Applications (AIP, 1995) pp. 22–43

  12. Y. Kato, H. Katsuta, T. Takizuka, H. Takada, H. Yoshida, Accelerator molten salt target system for transmutation of long lived nuclides, in Specialists’ Meeting on Acceleraotr Based Transmutation (PSI, 24–26 March 1992) (1992) pp. 133–143

  13. T. Mukaiyama, T. Takizuka, M. Mizumoto, Y. Ikeda, T. Ogawa, A. Hasegawa, H. Takada, H. Takano, Prog. Nucl. Energy 38, 107 (2001)

    Article  Google Scholar 

  14. P. McIntyre, S. Assadi, K. Badgley, W. Baker, J. Comeaux, J. Gerity, J. Kellams, A. McInturff, N. Pogue, S. Phongikaroon, Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy, in Application of Accelerators in Research and Industry: Twenty-Second International Conference (AIP, 2013) pp. 636–642

  15. N. Aizawa, T. Iwasaki, Y. Watanabe, T. Takani, J. Nucl. Sci. Technol. 53, 240 (2015)

    Article  Google Scholar 

  16. D.E. Holcomb, G.F. Flanagan, B.W. Patton, J.C. Gehin, R.L. Howard, T.J. Harrison, Tech. Rep. ORNL/TM-2011/105 (Oak Ridge National Laboratory, 2011)

  17. A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein, K. Czerski, Ann. Nucl. Energy 80, 225 (2015)

    Article  Google Scholar 

  18. X. Wang, R. Macian-Juan, M. Seidl, Preliminary Analysis of Basic Reactor Physics of the Dual Fluid Reactor Concept, in International Congress on Advances in Nuclear Power Plants (ICAPP) (Nice, 2015) p. 11

  19. A.E. Florin, I.R. Tannenbaum, J.F. Lemons, J. Inorg. Nucl. Chem. 2, 368 (1956)

    Article  Google Scholar 

  20. C.J. Barton, J. Phys. Colloid Chem. 64, 306 (1960)

    Article  Google Scholar 

  21. L.M. Ferris, J.C. Mailen, F.J. Smith, J. Chem. Eng. Data 16, 68 (1971)

    Article  Google Scholar 

  22. L.I. Ponomarev, M.B. Seregin, A.P. Parshin, S.A. Melʼnikov, A.A. Mikhalichenko, L.P. Zagorets, R.N. Manuilov, A.A. Rzheutskii, Sov. At. Energy 115, 5 (2013)

    Article  Google Scholar 

  23. V. Ignatiev, O. Feynberg, I. Gnidoi, A. Merzlyakov, Progress in development of Li, Be, Na/F molten salt actinide recycler & transmuter concept, in International Congress on Advances in Nuclear Power Plants (ICAPP) (2007) p. 10

  24. A.A. Lizin, S.V. Tomilin, O.E. Gnevashov, R.K. Gazizov, A.G. Osipenko, M.V. Kormilitsyn, A.A. Baranov, L.V. Zaharova, V.S. Naumov, L.I. Ponomarev, Sov. At. Energy 115, 11 (2013)

    Article  Google Scholar 

  25. C.W. Bjorklund, J.G. Reavis, J.A. Leary, K.A. Walsh, J. Phys. Chem. 63, 1774 (1959)

    Article  Google Scholar 

  26. E. Sooby, A. Baty, O. Benes, P. McIntyre, N. Pogue, M. Salanne, A. Sattarov, J. Nucl. Mater. 440, 298 (2013)

    Article  ADS  Google Scholar 

  27. C.H. Kim, Tech. Rep. 57, Korean Acad. Sci. Technol. (2010)

  28. A. Mourogov, P.M. Bokov, Energy Convers. Manag. 47, 2761 (2006)

    Article  Google Scholar 

  29. V. Sobolev, J. Nucl. Mater. 362, 235 (2007)

    Article  ADS  Google Scholar 

  30. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, Ann. Nucl. Energy 82, 142 (2015)

    Article  Google Scholar 

  31. M. Pusa, J. Leppänen, Nucl. Sci. Eng. 164, 140 (2010)

    Article  Google Scholar 

  32. M.B. Chadwick, P. Obložinský, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle et al., Nucl. Data Sheets 107, 2931 (2006)

    Article  ADS  Google Scholar 

  33. T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori et al., J. Nucl. Sci. Technol. 50, 913 (2013)

    Article  Google Scholar 

  34. A. Boudard, J. Cugnon, J.C. David, S. Leray, D. Mancusi, Phys. Rev. C 87, 014606 (2013)

    Article  ADS  Google Scholar 

  35. Y. Kadi, Transmutation Potential of the Energy Amplifier Demonstration Facility Calculated with the EA-MC Code Package, in Workshop on Hybrid Nuclear Systems for Energy Production, Utilisation of Actnides Si Transmutation of Long-Lived Radioactive Waste (ICTP, 2001)

  36. P. Seltborg, J. Wallenius, K. Tucek, W. Gudowski, Nucl. Sci. Eng. 145, 390 (2003)

    Article  Google Scholar 

  37. S.I. Bak, S.W. Hong, Y. Kadi, J. Nucl. Sci. Technol. 54, 862 (2017)

    Article  Google Scholar 

  38. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  39. Y. Kim, W. Park, R.N. Hill, An investigation of subcriticality level in accelerator-driven system, in PHYSOR 2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (Seoul, Korea, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Hong.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, Si., Hong, SW. & Kadi, Y. Design of an accelerator-driven subcritical dual fluid reactor for transmutation of actinides. Eur. Phys. J. Plus 134, 603 (2019). https://doi.org/10.1140/epjp/i2019-13015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-13015-3