Abstract.
An accelerator-driven subcritical dual fluid reactor (AD-DFR), which is a hybrid core operated by a high power accelerator, is designed for the transmutation of minor actinides. The subcritical core is dual in the sense that a lead-bismuth-eutectic-cooled fast reactor (LFR) is combined with a molten salt reactor (MSR). Thus, the core has two loops: one for the liquid metal coolant and the other for the molten salt fuel. The combination of LFR and MSR can take advantages of both reactor types. A subcritical core allows for loading a high fraction of minor actinides in fuels. An 800MW_t AD-DFR can transmute minor actinides approximately 120kg/year with only the maximum beam power of 13MW.
This is a preview of subscription content, access via your institution.
References
H. Nifenecker, O. Meplan, S. David, C. R. Acad. Sci. IV 2, 163 (2001)
C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fiétier, J. Gálvez, C. Gelès, Y. Kadi, R. Klapisch, P. Mandrillon, Tech. Rep. AT/95-44 (ET) (CERN, Geneva, 1995)
L. Cinotti, B. Giraud, H.A. Abderrahim, J. Nucl. Mater. 335, 148 (2004)
K. Tsujimoto, T. Sasa, K. Nishihara, H. Oigawa, H. Takano, J. Nucl. Sci. Technol. 41, 21 (2004)
H.A. Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, Energy Convers. Manag. 63, 4 (2012)
Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Ann. Nucl. Energy 87, 511 (2016)
J.S. Fraser, IEEE Trans. Nucl. Sci. NS-24, 1611 (1977)
K. Tsukada, J. At. Energy Soc. Jpn. 20, 1 (1978)
K. Furukawa, H. Ohno, J. Mochinaga, K. Igarashi, J. Nucl. Sci. Technol. 17, 562 (1980)
C.D. Bowman, E.D. Arthur, P.W. Lisowski, Nucl. Instrum. Methods Phys. Res. Sect. A 320, 336 (1992)
C.D. Bowman, Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project, in The International Conference on Accelerator-Driven Transmutation Technologies and Applications (AIP, 1995) pp. 22–43
Y. Kato, H. Katsuta, T. Takizuka, H. Takada, H. Yoshida, Accelerator molten salt target system for transmutation of long lived nuclides, in Specialists’ Meeting on Acceleraotr Based Transmutation (PSI, 24–26 March 1992) (1992) pp. 133–143
T. Mukaiyama, T. Takizuka, M. Mizumoto, Y. Ikeda, T. Ogawa, A. Hasegawa, H. Takada, H. Takano, Prog. Nucl. Energy 38, 107 (2001)
P. McIntyre, S. Assadi, K. Badgley, W. Baker, J. Comeaux, J. Gerity, J. Kellams, A. McInturff, N. Pogue, S. Phongikaroon, Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy, in Application of Accelerators in Research and Industry: Twenty-Second International Conference (AIP, 2013) pp. 636–642
N. Aizawa, T. Iwasaki, Y. Watanabe, T. Takani, J. Nucl. Sci. Technol. 53, 240 (2015)
D.E. Holcomb, G.F. Flanagan, B.W. Patton, J.C. Gehin, R.L. Howard, T.J. Harrison, Tech. Rep. ORNL/TM-2011/105 (Oak Ridge National Laboratory, 2011)
A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein, K. Czerski, Ann. Nucl. Energy 80, 225 (2015)
X. Wang, R. Macian-Juan, M. Seidl, Preliminary Analysis of Basic Reactor Physics of the Dual Fluid Reactor Concept, in International Congress on Advances in Nuclear Power Plants (ICAPP) (Nice, 2015) p. 11
A.E. Florin, I.R. Tannenbaum, J.F. Lemons, J. Inorg. Nucl. Chem. 2, 368 (1956)
C.J. Barton, J. Phys. Colloid Chem. 64, 306 (1960)
L.M. Ferris, J.C. Mailen, F.J. Smith, J. Chem. Eng. Data 16, 68 (1971)
L.I. Ponomarev, M.B. Seregin, A.P. Parshin, S.A. Melʼnikov, A.A. Mikhalichenko, L.P. Zagorets, R.N. Manuilov, A.A. Rzheutskii, Sov. At. Energy 115, 5 (2013)
V. Ignatiev, O. Feynberg, I. Gnidoi, A. Merzlyakov, Progress in development of Li, Be, Na/F molten salt actinide recycler & transmuter concept, in International Congress on Advances in Nuclear Power Plants (ICAPP) (2007) p. 10
A.A. Lizin, S.V. Tomilin, O.E. Gnevashov, R.K. Gazizov, A.G. Osipenko, M.V. Kormilitsyn, A.A. Baranov, L.V. Zaharova, V.S. Naumov, L.I. Ponomarev, Sov. At. Energy 115, 11 (2013)
C.W. Bjorklund, J.G. Reavis, J.A. Leary, K.A. Walsh, J. Phys. Chem. 63, 1774 (1959)
E. Sooby, A. Baty, O. Benes, P. McIntyre, N. Pogue, M. Salanne, A. Sattarov, J. Nucl. Mater. 440, 298 (2013)
C.H. Kim, Tech. Rep. 57, Korean Acad. Sci. Technol. (2010)
A. Mourogov, P.M. Bokov, Energy Convers. Manag. 47, 2761 (2006)
V. Sobolev, J. Nucl. Mater. 362, 235 (2007)
J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, Ann. Nucl. Energy 82, 142 (2015)
M. Pusa, J. Leppänen, Nucl. Sci. Eng. 164, 140 (2010)
M.B. Chadwick, P. Obložinský, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle et al., Nucl. Data Sheets 107, 2931 (2006)
T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori et al., J. Nucl. Sci. Technol. 50, 913 (2013)
A. Boudard, J. Cugnon, J.C. David, S. Leray, D. Mancusi, Phys. Rev. C 87, 014606 (2013)
Y. Kadi, Transmutation Potential of the Energy Amplifier Demonstration Facility Calculated with the EA-MC Code Package, in Workshop on Hybrid Nuclear Systems for Energy Production, Utilisation of Actnides Si Transmutation of Long-Lived Radioactive Waste (ICTP, 2001)
P. Seltborg, J. Wallenius, K. Tucek, W. Gudowski, Nucl. Sci. Eng. 145, 390 (2003)
S.I. Bak, S.W. Hong, Y. Kadi, J. Nucl. Sci. Technol. 54, 862 (2017)
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)
Y. Kim, W. Park, R.N. Hill, An investigation of subcriticality level in accelerator-driven system, in PHYSOR 2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (Seoul, Korea, 2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bak, Si., Hong, SW. & Kadi, Y. Design of an accelerator-driven subcritical dual fluid reactor for transmutation of actinides. Eur. Phys. J. Plus 134, 603 (2019). https://doi.org/10.1140/epjp/i2019-13015-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2019-13015-3