Skip to main content
Log in

Simulation of confined pocket of a city by leapfrogging method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Leapfrogging appears at several levels and hence may be one of the fundamental processes generating urban fractality. Simulations have been performed on random pockets (slums) with different areas and lifetime of the Delhi city. The images were procured and processed using GIS package SAS planet and ImageJ and the fractal dimension was calculated by the box-counting method. In addition, we propose a confined leapfrogging model. Both studies suggests that any such confined pocket shall eventually have a high fractal dimension in the range 1.65-1.85 with a central tendency of 1.76 from the data of pockets and 1.78 from the confined model. These slums will approach a high fractal dimension due to the high level of social and economic pressure there. The confined leapfrogging model is suggested as the underlying process of slum growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, San Francisco, 1982)

  2. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941)

    ADS  Google Scholar 

  3. A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962)

    ADS  MathSciNet  Google Scholar 

  4. B.B. Mandelbrot, Science 155, 636 (1967)

    ADS  Google Scholar 

  5. B.B. Mandelbrot, Fractals: Form, Chance and Dimension (W.H. Freeman and Company, New York, 1977)

  6. H.O. Peitgen, P.H. Richter, The Beauty of Fractals (Springer Verlag, New York, 1986)

    MATH  Google Scholar 

  7. J. Feder, Fractals (Plenum Press, New York, 1988)

  8. M. Fleischmann, D.J. Tildesley, R.C. Ball, Fractals in the Natural Sciences (Princeton University Press, Princeton, NJ, 1990)

  9. H. Lauwerier, Fractals, Endlessly Repeated Geometrical Figures (Princeton University Press, Princeton, NJ, 1991)

  10. J.P. Briggs, Fractals: The Patterns of Chaos: Discovering a New Aesthetic of Art, Science and Nature (Simon & Schuster, 1992)

  11. L.S. Liebovitch, Fractals and Chaos - Simplified for the Life Sciences (Oxford University Press, USA, 1998)

  12. S.H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry and Engineering (Studies in nonlinearity) (Westview Press, 2001)

  13. B.B. Mandelbrot, Fractals and Chaos, The Mandelbrot Set and Beyond (Springer Verlag, New York, 2004)

    MATH  Google Scholar 

  14. K. Falconer, Fractal geometry: mathematical foundations and applications (John Wiley & Sons, 2004)

  15. P.C. Ivanov et al., Nature 399, 461 (1999)

    ADS  Google Scholar 

  16. Y. Ashkenazy et al., Phys. Rev. Lett. 86, 1900 (2001)

    ADS  Google Scholar 

  17. R.D. King et al., Brain Imaging Behav. 3, 154 (2009)

    Google Scholar 

  18. H.E. Stanley, P. Meakin, Nature 335, 405 (1988)

    ADS  Google Scholar 

  19. X. Zhang et al., ACS Nano 9, 11909 (2015)

    Google Scholar 

  20. D. Koutsoyiannis, Hydrol. Sci. J. 48, 3 (2003)

    Google Scholar 

  21. W. Schlager, Geology 32, 185 (2004)

    ADS  Google Scholar 

  22. R.J. Bailey, D.G. Smith, Proc. Geo. Assoc. 116, 129 (2005)

    Google Scholar 

  23. B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Nature 308, 721 (1984)

    ADS  Google Scholar 

  24. A.R.T. Jonkers, Phys. Earth Planet. Int. 135, 253 (2003)

    ADS  Google Scholar 

  25. T. Gneiting, M. Schlather, SIAM Rev. 46, 269 (2004)

    ADS  MathSciNet  Google Scholar 

  26. H.B. Li et al., Nature 520, 518 (2015)

    ADS  Google Scholar 

  27. W. Willinger, M.S. Taqqu, V. Teverovsky, Finance Stochast. 3, 1 (1999)

    Google Scholar 

  28. D. Dejniak, Inform. Syst. Manag. 3, 113 (2014)

    Google Scholar 

  29. W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, IEEE/ACM Trans. Netw. 2, 1 (1994)

    Google Scholar 

  30. T. Karagiannis, M. Molle, M. Faloutsos, IEEE Internet Comput. 8, 57 (2004)

    Google Scholar 

  31. C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005)

    ADS  Google Scholar 

  32. B. Jiang, Y. Miao, Professional Geograph. 67, 295 (2015)

    Google Scholar 

  33. B. Jiang, Int. J. Geograph. Inf. Sci. 29, 159 (2015)

    Google Scholar 

  34. S. Soumya et al., Eur. Phys. J. Plus 132, 551 (2017)

    Google Scholar 

  35. M. von Korff, T. Sander, Sci. Rep. 9, 967 (2019)

    ADS  Google Scholar 

  36. N.L. Rashevsky, Bull. Math. Biophys. 17, 229 (1955)

    MathSciNet  Google Scholar 

  37. Z. He, Sci. Rep. 8, 10324 (2018)

    ADS  Google Scholar 

  38. L.F. Richardson, Gen. Syst. Yearb. 6, 139 (1961)

    Google Scholar 

  39. S.L. Arlinghaus, Geograf. Ann. B 67, 83 (1985)

    Google Scholar 

  40. M. Batty, Environ. Plan. B 14, 123 (1987)

    Google Scholar 

  41. P. Frankhauser, L’Espace Geograph. 19, 45 (1990)

    Google Scholar 

  42. M. Batty, P. Longley, Fractal Cities: A Geometry of Form and Function (Academic Press, London, 1994)

  43. M. Batty, Nature 377, 574 (1995)

    ADS  Google Scholar 

  44. S. Salat, L. Bourdic, C. Nowacki, Int J. Sustain. Build. Tech. Urban Dev. 1, 160 (2010)

    Google Scholar 

  45. Y. Zhang, J. Yu, W. Fan, Geo-spatial Inf. Sci. 11, 121 (2008)

    Google Scholar 

  46. M. Ge, Q. Lin, Geo-spatial Inf. Sci. 12, 265 (2009)

    Google Scholar 

  47. L. Benguigui, D. Czamanski, M. Marinov, Y. Portugali, Environ. Plan. B 27, 507 (2000)

    Google Scholar 

  48. S. Jiang, D. Liu, Int. J. Artif. Life Res. 3, 41 (2012)

    Google Scholar 

  49. H.A. Makse, S. Havlin, H.E. Stanley, Nature 377, 608 (1995)

    ADS  Google Scholar 

  50. F. Hausdorff, Math. Ann. 79, 157 (1919)

    Google Scholar 

  51. L. Benguigui, D. Czamanski, Geograph. Anal. 36, 69 (2004)

    Google Scholar 

  52. T. Vicsek, J. Phys. A 16, L647 (1983)

    ADS  Google Scholar 

  53. L. Benguigui, J. Phys. I 2, 385 (1992)

    Google Scholar 

  54. L. Benguigui, Environ. Plan. A 27, 1147 (1995)

    Google Scholar 

  55. M.F. Barnsley, Fractals Everywhere (Academic Press, Boston, MA, 1988)

  56. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Co, NY, 1983)

  57. S.A. Pruess, Fractals in Earth Sciences: Some Remarks on the Numerical Estimation of Fractal Dimension (Plenum Press, NY, 1995)

    Google Scholar 

  58. L. Benguigui, D. Czamanski, M. Marinov, Urb. Stud. 38, 1819 (2001)

    Google Scholar 

  59. S. McKillup, Statistics Explained: An Introductory Guide for Life Scientists (Cambridge University Press, New Delhi, India, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savinder Kaur.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Singh, S., Ashish, Talan, J. et al. Simulation of confined pocket of a city by leapfrogging method. Eur. Phys. J. Plus 134, 550 (2019). https://doi.org/10.1140/epjp/i2019-12993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12993-2

Navigation