Skip to main content
Log in

Unexpected magnetic behavior of Ga doped CuFe1-xGaxO2 delafossite, x = 0.04: First principle calculation and Monte Carlo simulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The structural electronic and magnetic properties of Ga doped delafossite CuFe0.96Ga0.04O2 are investigated using first principle calculations and Monte Carlo simulation. The calculations are based on the density functional theory using the Wien2k package within full potential linearized augmented plane wave method and spin-polarized generalized gradient approximation of the exchange-correlation functional. The simulated results show that an ideal Ga doped delafossite is an antiferromagnetic and the magnetic moments of the iron is about \( 3.91\mu_{B}\). Furthermore, we have explored the spin coupling interactions up to third nearest neighbors as well the coupling between adjacent layers in order to examine the magnetism and thermodynamical properties. In addition, we have reported the magnetic properties of this element using Monte Carlo simulation. The obtained values of the Néel temperature decrease as the absolute value of the single ion anisotropy \(| \Delta |\) increases. This result is in fair agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lunca-Popa, J. Afonso, P. Grysan, J. Crêpelliere, R. Leturcq, D. Lenoble, Sci. Rep. 8, 7216 (2018)

    ADS  Google Scholar 

  2. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    ADS  Google Scholar 

  3. T. Elkhouni, M. Amami, C.V. Colin, P. Strobel, A. Ben Salah, J. Magn. & Magn. Mater. 330, 101 (2013)

    ADS  Google Scholar 

  4. Maocai Zhang, Lingyan Dang, Chen Tian, Shifeng Zhao, Qingshan Lu, Superlattices Microstruct. 111, 423 (2017)

    ADS  Google Scholar 

  5. G. Xiao, Z. Xia, M. Wei, S. Huang, L. Shi, X. Zhang, H. Wu, F. Yang, Y. Song, Z. Ouyang, J. Magn. & Magn. Mater. 449, 214 (2018)

    ADS  Google Scholar 

  6. David O. Scanlon, Aron Walsh, Graeme W. Watson, Chem. Mater. 21, 4568 (2009)

    Google Scholar 

  7. David O. Scanlon, Graeme W. Watson, J. Mater. Chem. 21, 3655 (2011)

    Google Scholar 

  8. David O. Scanlon, Graeme W. Watson, J. Phys. Chem. Lett. 1, 3195 (2010)

    Google Scholar 

  9. J. Vidal, F. Trani, F. Bruneval, M.A. Marques, S. Botti, Phys. Rev. Lett. 104, 136401 (2010)

    ADS  Google Scholar 

  10. F. Trani, J. Vidal, S. Botti, M.A. Marques, Phys. Rev. B 82, 085115 (2010) 83

    ADS  Google Scholar 

  11. T.F. Cerqueira, S. Lin, M. Amsler, S. Goedecker, S. Botti, M.A. Marques, Chem. Mater. 27, 4562 (2015)

    Google Scholar 

  12. F. Trani, J. Vidal, S. Botti, M.A. Marques, Phys. Rev. B 82, 085115 (2010)

    ADS  Google Scholar 

  13. T. Kimura, T. Goto, H. shintani, H. Ishzaka, T. Amira, Y. Tokura, Nature (London) 426, 55 (2003)

    ADS  Google Scholar 

  14. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Google Scholar 

  15. H.N. Abdelhamid, Mater. Sci. Forum 832, 28 (2015)

    Google Scholar 

  16. H.N. Abdelhamid, S. Kumaran, H.F. Wu, RSC Adv. 6, 97629 (2016)

    Google Scholar 

  17. H. Jiang, X. Wang, X. Zang, W.f. Wu, S. Sun, C. Xiong, W. Yin, C. Gui, X. Zhu, J. Alloys Compd. 553, 245 (2013)

    Google Scholar 

  18. H. Hiraga, T. Makino, T. Fukuura, H.M. Weng, M. Kawasaki, Phys. Rev. B 84, 041411 (2011)

    ADS  Google Scholar 

  19. J.L. Ribeiro, J.M. Perez-Mato, L.G. Vieira, J. Magn. & Magn. Mater. 416, 15 (2016)

    ADS  Google Scholar 

  20. M.N. Huda, Y. Yan, A. Walsh, S.-H. Wei, M.M. Al-Jassim, Phys. Rev. B 80, 035205 (2009)

    ADS  Google Scholar 

  21. R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971)

    Google Scholar 

  22. R.A. Wheatley, S. Rojas, C. Oppolzer, T. Joshi, P. Borisov, D. Lederman, A.L. Cabrera, Thin Solid Films 626, 110 (2017)

    ADS  Google Scholar 

  23. W. Soller, A.J. Thompson, Phys. Rev. 47, 644 (1935)

    Google Scholar 

  24. M.A. Sarabia, S.D. Rojas, Z. López-Cabaña, R. Villalba, G. González, A.L. Cabrera, J. Phys. Chem. Solids 98, 271 (2016)

    ADS  Google Scholar 

  25. L. Shi, Z. Jin, B. Chen, N. Xia, H. Zuo, Y. Wang, Z. Ouyang, Z. Xia, J. Magn. & Magn. Mater. 372, 7 (2014)

    ADS  Google Scholar 

  26. D. Song, X.M. Wang, Z.Y. Zhao, J.C. Wu, J.Y. Zhao, X.G. Liu, X. Zhao, X.F. Sun, Phys. Rev. B 95, 224419 (2017)

    ADS  Google Scholar 

  27. J.W. Lekse, M.K. Underwood, J.P. Lewis, C. Matranga, J. Phys. Chem. C 116, 1865 (2012)

    Google Scholar 

  28. J. Gu, A. Wuttig, J.W. Krizan, Y. Hu, Z.M. Detweiler, R.J. Cava, A.B. Bocarsly, J. Phys. Chem. C 117, 12415 (2013)

    Google Scholar 

  29. O. Aktas, K.D. Truong, T. Otani, G. Balakrishnan, M.J. Clouter, T. Kimura, G. Quirion, J. Phys.: Condens. Matter 24, 036003 (2012)

    ADS  Google Scholar 

  30. H.J. Xiang, E.J. Kan, Su-Huai Wei, M.-H. Whangbo, X.G. Gong, Phys. Rev. B 84, 224429 (2011)

    ADS  Google Scholar 

  31. A.P. Ramirez, Handb. Magn. Mater. 13, 423 (2001)

    Google Scholar 

  32. T. Kimura, J.C. Lashley, A.P. Ramirez, Phys. Rev. B 73, 220401 (2006)

    ADS  Google Scholar 

  33. M. Mekata, N. Yaguchi, T. Takagi, S. Mitsuda, H. Yoshizawa, J. Magn. & Magn. Mater. 104--107, 823 (1992)

    ADS  Google Scholar 

  34. S. Mitsuda, H. Yoshizawa, N. Yaguchi, M. Mekata, J. Phys. Soc. Jpn. 60, 1885 (1991)

    ADS  Google Scholar 

  35. S. Mitsuda, M. Mase, K. Prokes, H. Kitazawa, H. Katori, J. Phys. Soc. Jpn. 69, 3513 (2000)

    ADS  Google Scholar 

  36. R.D. Shannon, D.B. Rogers, D. Burl, C.T. Prewitt, J.L. Gillson, Inorg. Chem. 10, 723 (1971)

    Google Scholar 

  37. S. Seki, Magnetoelectric response in triangular lattice antiferromagnets, in Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems (Springer, Tokyo, 2012) pp. 25--83

    Google Scholar 

  38. T. Takagi, M. Mekata, J. Phys. Soc. Jpn. 64, 4609 (1995)

    ADS  Google Scholar 

  39. Cristiana Di Valentin, Silvana Botti, Matteo Cococcioni (Editors), First Principles Approaches to Spectroscopic Properties of Complex Materials, Vol. 347 (Springer, 2014)

  40. R.M. Dreizler, E.K. Gross Density Functional Theory: An Approach to the Quantum Many-body Problem (Springer Science & Business Media, 2012)

    Google Scholar 

  41. R. Car, F. de Angelis, P. Giannozzi, N. Marzari, First-principles molecular dynamics, in Handbook of Materials Modeling, edited by S. Yip (Springer, Dordrecht, 2005)

  42. T.F. Cerqueira, R. Sarmiento-Perez, F. Trani, M. Amsler, S. Goedecker, M.A. Marques, S. Botti, MRS Commun. 3, 157 (2013)

    Google Scholar 

  43. J. Shi, T.F. Cerqueira, W. Cui, F. Nogueira, S. Botti, M.A. Marques, Sci. Rep. 7, 43179 (2017)

    ADS  Google Scholar 

  44. A.P. Amrute, Z. Lodziana, C. Mondelli, F. Krumeich, J. Perez-Ramírez, Chem. Mater. 25, 4423 (2013)

    Google Scholar 

  45. K. Lejaeghere, G. Bihlmayer, T. Bjorkman, P. Blaha et al., Science 351, 1415 (2016)

    Google Scholar 

  46. F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, P. Dai, J.W. Lynn, T. Kimura, Phys. Rev. B 73, 220404 (2006)

    ADS  Google Scholar 

  47. S. Mitsuda, N. Kasahara, T. Uno, M. Mase, J. Phys. Soc. Jpn. 67, 4026 (1998)

    ADS  Google Scholar 

  48. R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971)

    Google Scholar 

  49. H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, Appl. Phys. Lett. 78, 1583 (2001)

    ADS  Google Scholar 

  50. D. Xiong, Y. Qi, X. Li, X. Liu, H. Tao, W. Chen, X. Zhao, RSC Adv. 5, 49280 (2015)

    Google Scholar 

  51. M.M. Moharam, M.M. Rashad, E.M. Esayed et al., J. Mater. Sci.: Mater. Electron. 25, 1798 (2014)

    Google Scholar 

  52. A. Pabst, Am. Mineral. 75, 105 (1988)

    Google Scholar 

  53. J.-P. Doumerc, M. Pouchard, P. Hagenmuller, M. Elazhari, A. Ammar, M. Elaatmani, Mater. Res. Bull. 27, 39 (1992)

    Google Scholar 

  54. M.A. Marquardt, N.A. Ashmore, D.P. Cann, Thin Solid Films 496, 146 (2006)

    ADS  Google Scholar 

  55. A. Kokalj, J. Mol. Graph. Model. 17, 176 (1999) code available from http://www.xcrysden.org/

    Google Scholar 

  56. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, Wien2k, An Augmented-Plane-Wave+Local Orbitals Program for Calculating Crystal Properties (TechnWien, Universitat, Wien, Austria, 2001)

  57. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  58. V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    ADS  Google Scholar 

  59. G.K.H. Madsen, P. Novak, Europhys. Lett. 69, 777 (2005)

    ADS  Google Scholar 

  60. K. Schwarz, P. Mohn, J. Phys. F 14, L129 (1984)

    ADS  Google Scholar 

  61. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    ADS  Google Scholar 

  62. F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 48, 431 (1987)

    ADS  Google Scholar 

  63. T. Bahlagui, H. Bouda, A. El Kenz, L. Bahmad, A. Benyoussef, Superlattices Microstruct. 110, 90 (2017)

    ADS  Google Scholar 

  64. C.G. Read, Y. Park, K.-S. Choi, J. Phys. Chem. Lett. 3, 1872 (2012)

    Google Scholar 

  65. Yuemei Zhang, Erjun Kan, Myung-Hwan Whangbo, Chem. Mater. 23, 4181 (2011)

    Google Scholar 

  66. F. Ye, J.A. Fernandez-Baca, R.S. Fishman, Y. Ren, H.J. Kang, Y. Qiu, T. Kimura, Phys. Rev. Lett. 99, 157201 (2007)

    ADS  Google Scholar 

  67. G. Kresse, J. Hafner, Phys. Rev. B 47, 558(R) (1993)

    ADS  Google Scholar 

  68. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    ADS  Google Scholar 

  69. P. Mohn, Clas Persson, P. Blaha, K. Schwarz, P. Novák, H. Eschrig, Phys. Rev. Lett. 87, 196401 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouda, H., Bahlagui, T., Masrour, R. et al. Unexpected magnetic behavior of Ga doped CuFe1-xGaxO2 delafossite, x = 0.04: First principle calculation and Monte Carlo simulation. Eur. Phys. J. Plus 134, 543 (2019). https://doi.org/10.1140/epjp/i2019-12955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12955-8

Navigation