Skip to main content
Log in

An investigation on the fractional derivative model in characterizing sodium chloride transport in a single fracture

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Contaminant transport in a single fracture cannot be reliably captured by the classical advection-dispersion equation model, due to the heterogeneity nature of the fracture. This study applied a time fractional advection-dispersion equation (ADE) model to quantify chloride ion transport in a single fracture observed in the lab. We further explored the solute transport characteristics by comparing them with the simulation results using a classical ADE model and a space-time fractional ADE model. Comparison results show that the time fractional derivative model is better than the classical ADE model in describing the blocking process of solute transport in the fracture (the tailing phenomenon of the breakthrough curve or BTC). The space-time fractional ADE model is not needed to describe the observed BTC, because only time evolution of solute concentration is considered in this case. Experimental analysis also indicates that the order of the time fractional derivative increases with the fracture aperture, and sub-diffusion is enhanced by a slower flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Wang, Y. Zhang, J.S. Liu, B.Y. Zhang, J. Geochem Explor. 106, 211 (2010)

    Article  Google Scholar 

  2. J.Y. Lee, K.K. Lee, J. Hydrol. 229, 190 (2000)

    Article  ADS  Google Scholar 

  3. X.Y. Zhu, S.H. Xu, J.J. Zhu, N.Q. Zhou, C.Y. Wu, Groundwater 35, 538 (1997)

    Article  Google Scholar 

  4. C.W. Kreitler, L.A. Browning, J. Hydrol. 61, 285 (1983)

    Article  ADS  Google Scholar 

  5. D. Weatherill, T. Graf, C.T. Simmons, P.G. Cook, Groundwater 46, 606 (2008)

    Article  Google Scholar 

  6. M. Wang, W. Zhao, R. Garrard, Y. Zhang, Y. Liu, J. Hydrodyn. 30, 1055 (2018)

    Article  ADS  Google Scholar 

  7. J. Bodin, F. Delay, G.D. Marsily, Hydrogeol. J. 11, 418 (2003)

    Article  ADS  Google Scholar 

  8. S.P. Neuman, D.M. Tartakovsky, Adv. Water Resour. 32, 670 (2009)

    Article  ADS  Google Scholar 

  9. G. Dagan, Annu. Rev. Fluid Mech. 19, 183 (1987)

    Article  ADS  Google Scholar 

  10. Y. Zhang, D.A. Benson, D.M. Reeves, Adv. Water Resour. 32, 561 (2009)

    Article  ADS  Google Scholar 

  11. A.J. Turski, B. Atamaniuk, E. Turaka, J. Tech. Phys. 44, 193 (2003)

    Google Scholar 

  12. Z. Jamshidzadeh, F.T.C. Tsai, S.A. Mirbagheri, Adv. Water Resour. 61, 12 (2013)

    Article  ADS  Google Scholar 

  13. Z. Chen, J. Qian, H. Qin, J. Hydrodyn. 23, 745 (2011)

    Article  ADS  Google Scholar 

  14. Y. Tan, Z. Zhou, J. Hydrodyn. 20, 365 (2008)

    Article  ADS  Google Scholar 

  15. G. Margolin, M. Dentz, B. Berkowitz, Chem. Phys. 295, 71 (2003)

    Article  Google Scholar 

  16. R.M. Garrard, Y. Zhang, S. Wei, H.G. Sun, J.Z. Qian, Groundwater 55, 857 (2017)

    Article  Google Scholar 

  17. E. Barkai, Chem. Phys. 284, 13 (2002)

    Article  Google Scholar 

  18. F. Huang, F. Liu, Anziam J. 46, 317 (2005)

    Article  MathSciNet  Google Scholar 

  19. D.A. Benson, M.M. Meerschaert, J. Revielle, Adv. Water Resour. 51, 479 (2013)

    Article  ADS  Google Scholar 

  20. J. Tian, D.K. Tong, J. Hydrodyn. 18, 287 (2006)

    Article  ADS  Google Scholar 

  21. X.S. Yan, J. Qian, Hydrodyn. Res. Prog. 29, 524 (2014) (in Chinese)

    Google Scholar 

  22. H. Ye, Experimental Study on Water Flow and Solute Transport in a Single Fracture (2005) (in Chinese)

  23. J.H. Cushman, T.R. Ginn, Water Resour. Res. 36, 3763 (2000)

    Article  ADS  Google Scholar 

  24. M.Y. Xu, W.C. Tan, Sci. China: Phys. Mech. Astron. 49, 257 (2006)

    Article  ADS  Google Scholar 

  25. M. Larsson, A. Niemi, C.F. Tsang, Water Resour. Res. 48, W01508 (2012)

    Article  ADS  Google Scholar 

  26. C. Cheng, Adv. Water Sci. 14, 402 (2003) (in Chinese)

    ADS  Google Scholar 

  27. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1403 (2000)

    Article  ADS  Google Scholar 

  28. A.S. Chaves, Phys. Lett. A 239, 13 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, 1296 (2003)

    ADS  Google Scholar 

  30. H.G. Sun, W. Chen, C. Li, Y. Chen, Phys. A 389, 2719 (2010)

    Article  Google Scholar 

  31. Y. Xia, J.C. Wu, Y. Zhang, Adv. Water Resour. 24, 349 (2013)

    Google Scholar 

  32. C. Stumpp, G. Nützmann, S. Maciejewski, P. Maloszewski, J. Hydrol. 375, 566 (2009)

    Article  ADS  Google Scholar 

  33. J. Qian, H. Zhan, Z. Chen, H. Ye, J. Hydrol. 399, 246 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhong Qian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, Y., Qian, J. et al. An investigation on the fractional derivative model in characterizing sodium chloride transport in a single fracture. Eur. Phys. J. Plus 134, 440 (2019). https://doi.org/10.1140/epjp/i2019-12954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12954-9

Navigation