Skip to main content

Advertisement

Log in

Applying quantum supersymmetry and perturbation theory to the energy-dependent Hulthén potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We deal with the energy-dependent Hulthén potential, by using the supersymmetric quantum mechanics and the first-order perturbation theory. We consider the Hulthén potential linearly dependent on the energy which is introduced in the coupling constant. We evaluate the energy eigenvalues and the corresponding reduced radial eigenfunctions. We compare the analytical results with the numerical solutions of the Schrödinger equation in the energy-dependent and the energy-independent cases. We then investigate the screening effect in order to determine the critical screening parameter values for each state. After that, we look into the absorption oscillator strengths for different transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Rizov, H. Sazdjian, I.T. Todorov, Ann. Phys. 165, 59 (1985)

    ADS  Google Scholar 

  2. W. Pauli, Zur Quantenmechanik des magnetischen Elektrons (Vieweg+Teubner Verlag, Wiesbaden, 1988) pp. 282--305

    Google Scholar 

  3. H.A. Bethe, E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Science & Business Media, 2012)

  4. M. Singh, R. Kharab, Nucl. Phys. A 897, 198 (2013)

    ADS  Google Scholar 

  5. R.J. Lombard, J. Mareš, C. Volpe, J. Phys. G 34, 1879 (2007)

    ADS  Google Scholar 

  6. R.J. Lombard, J. Mareš, Phys. Lett. A 373, 426 (2009)

    ADS  Google Scholar 

  7. M.D. Sanctis, P. Quintero, Eur. Phys. J. A 39, 145 (2009)

    ADS  Google Scholar 

  8. M. Jaulent, C. Jean, Commun. Math. Phys. 28, 177 (1972)

    ADS  Google Scholar 

  9. M. Jaulent, C. Jean, Ann. Inst. Henri Poincaré, Sect. A 25, 105 (1976)

    Google Scholar 

  10. C.V. der Mee, V. Pivovarchik, J. Math. Phys. 42, 158 (2001)

    ADS  MathSciNet  Google Scholar 

  11. A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28, 1350079 (2013)

    ADS  Google Scholar 

  12. A. Benchikha, L. Chetouani, Cent. Eur. J. Phys. 12, 392 (2014)

    Google Scholar 

  13. A.I. Budaca, R. Budaca, Eur. Phys. J. Plus 134, 145 (2019)

    Google Scholar 

  14. A.I. Budaca, R. Budaca, Phys. Scr. 92, 084001 (2017)

    ADS  Google Scholar 

  15. R. Budaca, Eur. Phys. J. A 52, 314 (2016)

    ADS  Google Scholar 

  16. V.I. Belyavskii, M.V. Gol’dfarb, Y.V. Kopaev, Semiconductors 31, 936 (1997)

    ADS  Google Scholar 

  17. B.S. Pavlov, A.V. Strepetov, Theor. Math. Phys. 90, 152 (1992)

    Google Scholar 

  18. J. Formánek, R.J. Lombard, J. Mareš, Czech. J. Phys. 54, 289 (2004)

    ADS  Google Scholar 

  19. E. Witten, Nucl. Phys. B 188, 513 (1981)

    ADS  Google Scholar 

  20. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    ADS  MathSciNet  Google Scholar 

  21. E. Schrödinger, Proc. R. Irish Acad. Sect. A 46, 9 (1940)

    Google Scholar 

  22. E. Schrödinger, Proc. R. Irish Acad. Sect. A 46, 183 (1940)

    Google Scholar 

  23. L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)

    ADS  Google Scholar 

  24. G. Darboux, (1882)

  25. A.A. Andrianov, N.V. Borisov, M.V. Ioffe, Phys. Lett. A 105, 19 (1984)

    ADS  MathSciNet  Google Scholar 

  26. L.E. Gendenshtein, JETP Lett. 38, 356 (1983) (Pisma Zh. Eksp. Teor. Fiz. 38

    ADS  Google Scholar 

  27. R. Yekken, M. Lassaut, R.J. Lombard, Ann. Phys. 338, 195 (2013)

    ADS  Google Scholar 

  28. C.S. Lam, Y.P. Varshni, Phys. Rev. A 4, 1875 (1971)

    ADS  Google Scholar 

  29. B. Durand, L. Durand, Phys. Rev. D 23, 1092 (1981)

    ADS  Google Scholar 

  30. R.L. Hall, Phys. Rev. A 32, 14 (1985)

    ADS  Google Scholar 

  31. T. Tietz, J. Chem. Phys. 35, 1917 (1961)

    ADS  Google Scholar 

  32. K. Szalewicz, J.H. Monkhorst, J. Chem. Phys. 75, 5785 (1981)

    ADS  Google Scholar 

  33. G. Malli, Chem. Phys. Lett. 26, 578 (1981)

    ADS  Google Scholar 

  34. J. Lindhard, P.G. Hansen, Phys. Rev. Lett. 57, 965 (1986)

    ADS  Google Scholar 

  35. I.S. Bitensky, V.K. Ferleger, I.A. Wojciechowski, Nucl. Instrum. Methods Phys. Res. Sect. B 125, 201 (1997)

    ADS  Google Scholar 

  36. C.S. Jia, J.Y. Wang, S. He, L.T. Sun, J. Phys. A 33, 6993 (2000)

    ADS  MathSciNet  Google Scholar 

  37. P. Pyykkö, J. Jokisaari, Chem. Phys. 10, 293 (1975)

    Google Scholar 

  38. L. Hulthén, Ark. Mat. Astron. Fys. 28, 5 (1942)

    MathSciNet  Google Scholar 

  39. S. Flügge, Practical Quantum Mechanics (Springer Science & Business Media, 2012)

  40. E.D. Filho, R.M. Ricotta, Mod. Phys. Lett. A 10, 1613 (1995)

    ADS  Google Scholar 

  41. A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987)

    ADS  Google Scholar 

  42. Y.P. Varshni, Phys. Rev. A 41, 4682 (1990)

    ADS  MathSciNet  Google Scholar 

  43. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    ADS  Google Scholar 

  44. O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A 39, 11521 (2006)

    ADS  MathSciNet  Google Scholar 

  45. A. Diaf, M. Lassaut, R.J. Lombard, Rom. J. Phys. 57, 159 (2012)

    Google Scholar 

  46. R. Yekken, R.J. Lombard, J. Phys. A 43, 125301 (2010)

    ADS  MathSciNet  Google Scholar 

  47. C. Eckart, Phys. Rev. 35, 1303 (1930)

    ADS  Google Scholar 

  48. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999)

    ADS  Google Scholar 

  49. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations: Nonstiff Problems, in Springer Series in Computational Mathematics, Vol. 8 (Springer-Verlag, Berlin, Heidelberg, 1993) https://doi.org/10.1007/978-3-540-78862-1

  50. R. Yekken, Du spectre au potentiel étude du problème inverse dans le cas des états discrets avec extension aux potentiels dépendant de l’énergie, PhD Thesis, Université des sciences et de la technologie Houari Boumediene (2009)

  51. M. Demiralp, Appl. Math. Comput. 168, 1380 (2005)

    MathSciNet  Google Scholar 

  52. S.H. Patil, J. Phys. A 17, 575 (1984)

    ADS  Google Scholar 

  53. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 2013)

  54. A. Lindgård, S.E. Nielsen, Atom. Data Nucl. Data Tables 19, 533 (1977)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhadj Hocine.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocine, E., Yekken, R. & Lombard, R. Applying quantum supersymmetry and perturbation theory to the energy-dependent Hulthén potential. Eur. Phys. J. Plus 134, 561 (2019). https://doi.org/10.1140/epjp/i2019-12921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12921-6

Navigation