Skip to main content
Log in

Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Oh, O. Song, L. Librescu, Int. J. Solids Struct. 40, 1203 (2003)

    Google Scholar 

  2. M. Tahani, Mater. Des. 27, 976 (2006)

    Google Scholar 

  3. B. Jiang, J. Xu, Y. Li, Compos. Struct. 117, 201 (2014)

    Google Scholar 

  4. Y. Qin, X. Li, E. Yang, Y. Li, Compos. Struct. 153, 490 (2016)

    Google Scholar 

  5. L. Librescu, O. Song, Thin-Walled Composite Beams: Theory and Application, Vol. 131 (Springer Science & Business Media, 2005)

  6. N. Roy, R. Ganguli, J. Sound Vib. 283, 821 (2005)

    ADS  Google Scholar 

  7. J.H. Park, H.Y. Park, S.Y. Jeong, S.I. Lee, Y.H. Shin, J.-P. Park, Curr. Appl. Phys. 10, S332 (2010)

    Google Scholar 

  8. M. Schilhansl, J. Appl. Mech. 25, 28 (1958)

    MathSciNet  Google Scholar 

  9. H.H. Yoo, S.H. Shin, J. Sound Vib. 212, 807 (1998)

    ADS  Google Scholar 

  10. H.H. Yoo, S.H. Lee, S.H. Shin, J. Sound Vib. 286, 745 (2005)

    ADS  Google Scholar 

  11. S.H. Lee, S.H. Shin, H.H. Yoo, KSME Int. J. 18, 240 (2004)

    Google Scholar 

  12. C. De Valve, R. Pitchumani, Compos. Struct. 110, 289 (2014)

    Google Scholar 

  13. E. Carrera, M. Filippi, E. Zappino, Compos. Struct. 106, 317 (2013)

    Google Scholar 

  14. R. Bahaadini, M.R. Dashtbayazi, M. Hosseini, Z. Khalili-Parizi, Ocean Eng. 160, 311 (2018)

    Google Scholar 

  15. R. Bahaadini, A.R. Saidi, M. Hosseini, Acta Mech. 229, 5013 (2018)

    MathSciNet  Google Scholar 

  16. S.A. Fazelzadeh, M. Hosseini, J. Fluids Struct. 23, 1251 (2007)

    ADS  Google Scholar 

  17. S.A. Fazelzadeh, P. Malekzadeh, P. Zahedinejad, M. Hosseini, J. Sound Vib. 306, 333 (2007)

    ADS  Google Scholar 

  18. R. Bahaadini, A.R. Saidi, Aerospace Sci. Technol. 80, 381 (2018)

    Google Scholar 

  19. R. Bahaadini, A.R. Saidi, Thin-Walled Struct. 132, 604 (2018)

    Google Scholar 

  20. R. Bahaadini, A.R. Saidi, Eur. J. Mech.-A/Solids 72, 298 (2018)

    ADS  MathSciNet  Google Scholar 

  21. A.M. Dehrouyeh-Semnani, Int. J. Eng. Sci. 94, 150 (2015)

    MathSciNet  Google Scholar 

  22. V.V.S. Rao, P.K. Sinha, Compos. Struct. 64, 329 (2004)

    Google Scholar 

  23. B.P. Patel, M. Ganapathi, D.P. Makhecha, Compos. Struct. 56, 25 (2002)

    Google Scholar 

  24. D. Gayen, T. Roy, Int. J. Compos. Mater. 3, 46 (2013)

    Google Scholar 

  25. C.M. Saravia, S.P. Machado, V.H. Cortínez, Eur. J. Mech.-A/Solids 30, 432 (2011)

    ADS  MathSciNet  Google Scholar 

  26. H. Arvin, F. Bakhtiari-Nejad, Compos. Struct. 96, 121 (2013)

    Google Scholar 

  27. R. Bahaadini, A.R. Saidi, Eur. J. Mech.-A/Solids 85, 285 (2019)

    Google Scholar 

  28. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)

    Google Scholar 

  29. A.K. Singh, S. Koley, A. Negi, A. Ray, Eur. Phys. J. Plus 134, 95 (2019)

    Google Scholar 

  30. A. Jandaghian, A. Jafari, J. Adv. Des. Manuf. Technol. 5, 1 (2012)

    Google Scholar 

  31. A. Alibeigloo, Compos. Struct. 92, 1535 (2010)

    Google Scholar 

  32. S.R. Li, H.D. Su, C.J. Cheng, Appl. Math. Mech. 30, 969 (2009)

    Google Scholar 

  33. Q. Wang, S.T. Quek, Int. J. Solids Struct. 39, 4167 (2002)

    Google Scholar 

  34. M. Hosseini, R. Bahaadini, B. Jamali, J. Vib. Control 24, 1809 (2016)

    Google Scholar 

  35. M. Hosseini, A.Z.B. Maryam, R. Bahaadini, Microfluid. Nanofluid. 21, 134 (2017)

    Google Scholar 

  36. M. Hosseini, R. Bahaadini, Z. Khalili-Parizi, J. Intell. Mater. Syst. Struct. 30, 593 (2019)

    Google Scholar 

  37. R.M. Jones, Mechanics of Composite Materials (CRC Press, 1998)

  38. G. Rezazadeh, A. Tahmasebi, M. Zubstov, Microsyst. Technol. 12, 1163 (2006)

    Google Scholar 

  39. R. Bahaadini, A.R. Saidi, M. Hosseini, Int. J. Eng. Sci. 123, 181 (2018)

    Google Scholar 

  40. R. Bahaadini, M. Hosseini, Comput. Mater. Sci. 114, 151 (2016)

    Google Scholar 

  41. M. Hosseini, R. Bahaadini, Int. J. Eng. Sci. 101, 1 (2016)

    Google Scholar 

  42. R. Bahaadini, A.R. Saidi, M. Hosseini, J. Vib. Control 25, 203 (2019)

    MathSciNet  Google Scholar 

  43. J.R. Banerjee, J. Sound Vib. 233, 857 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Arabjamaloei.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabjamaloei, Z., Mofidi, M., Hosseini, M. et al. Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment. Eur. Phys. J. Plus 134, 556 (2019). https://doi.org/10.1140/epjp/i2019-12910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12910-9

Navigation