Skip to main content
Log in

Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article aims to analyse the global nonlocal dynamics of imperfect nanoscale fluid-conveying nanotubes subject to pulsatile flow. The nanotubes are assumed to be viscoelastic. Utilising nonlocal strain gradient theory, Beskok-Karniadakis assumptions, Kelvin-Voigt scheme and Euler-Bernoulli theory, the coupled size-dependent equations are presented to account for the size effects for the nanoscale fluid and solid. Additionally, Coriolis and centrifugal accelerations, imperfection effects are considered in this article. Using different parameters, the response of the system is plotted and investigated. This investigation shows that the bifurcation response for transverse and longitudinal direction is highly dependent on the imperfection of nanotubes, the velocity and frequency of pulsatile flow. Moreover, varying different velocity components results in different responses. The preliminary results show that imperfections in fluid-conveying nanotubes reduce the chaos region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks et al., Science 284, 1340 (1999)

    ADS  Google Scholar 

  2. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)

    ADS  Google Scholar 

  3. S. Joseph, N. Aluru, Nano Lett. 8, 452 (2008)

    ADS  Google Scholar 

  4. M. Longhurst, N. Quirke, Nano Lett. 7, 3324 (2007)

    ADS  Google Scholar 

  5. N. Moldovan, K.-H. Kim, H.D. Espinosa, J. Microelectromech. Syst. 15, 204 (2006)

    Google Scholar 

  6. M. Kamali, M. Shamsi, A. Saidi, Eur. Phys. J. Plus 133, 110 (2018)

    Google Scholar 

  7. M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Eur. Phys. J. Plus 132, 393 (2017)

    ADS  Google Scholar 

  8. A. Hadi, M.Z. Nejad, M. Hosseini, Int. J. Eng. Sci. 128, 12 (2018)

    Google Scholar 

  9. M. Farajpour, A. Shahidi, F. Tabataba’i-Nasab, A. Farajpour, Eur. Phys. J. Plus 133, 219 (2018)

    Google Scholar 

  10. F. Ebrahimi, M.R. Barati, P. Haghi, Eur. Phys. J. Plus 131, 383 (2016)

    Google Scholar 

  11. M.F. Oskouie, R. Ansari, H. Rouhi, Eur. Phys. J. Plus 133, 336 (2018)

    Google Scholar 

  12. A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 133, 231 (2018)

    Google Scholar 

  13. M.H. Ghayesh, A. Farajpour, Int. J. Eng. Sci. 137, 8 (2019)

    Google Scholar 

  14. H. Farokhi, M.H. Ghayesh, Commun. Nonlinear Sci. Numer. Simul. 59, 592 (2018)

    ADS  MathSciNet  Google Scholar 

  15. L. Panda, R. Kar, J. Sound Vib. 309, 375 (2008)

    ADS  Google Scholar 

  16. A. Bajaj, Dyn. Stab. Syst. 2, 19 (1987)

    ADS  Google Scholar 

  17. N.S. Namachchivaya, W. Tien, J. Fluids Struct. 3, 609 (1989)

    Google Scholar 

  18. D. Gorman, J. Reese, Y. Zhang, J. Sound Vib. 230, 379 (2000)

    ADS  Google Scholar 

  19. J. Luczko, A. Czerwiński, J. Fluids Struct. 70, 235 (2017)

    ADS  Google Scholar 

  20. M. Asghari, M. Ahmadian, M. Kahrobaiyan, M. Rahaeifard, Mater. Des. 31, 2324 (2010)

    Google Scholar 

  21. L.-L. Ke, Y.-S. Wang, Compos. Struct. 93, 342 (2011)

    Google Scholar 

  22. M. Salamat-talab, F. Shahabi, A. Assadi, Appl. Math. Model. 37, 507 (2013)

    MathSciNet  Google Scholar 

  23. M. Farajpour, A. Shahidi, A. Farajpour, Mater. Res. Express 5, 035026 (2018)

    ADS  Google Scholar 

  24. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 123, 197 (2018)

    Google Scholar 

  25. M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 86, 60 (2015)

    Google Scholar 

  26. M.H. Ghayesh, H. Farokhi, A. Gholipour, M. Tavallaeinejad, Int. J. Eng. Sci. 122, 56 (2018)

    Google Scholar 

  27. A. Gholipour, H. Farokhi, M.H. Ghayesh, Nonlinear Dyn. 79, 1771 (2015)

    Google Scholar 

  28. T.-Z. Yang, S. Ji, X.-D. Yang, B. Fang, Int. J. Eng. Sci. 76, 47 (2014)

    Google Scholar 

  29. S. Mashrouteh, M. Sadri, D. Younesian, E. Esmailzadeh, Nonlinear Dyn. 85, 1007 (2016)

    Google Scholar 

  30. M.H. Ghayesh, Microsyst. Technol. 24, 1743 (2018)

    MathSciNet  Google Scholar 

  31. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 127, 127 (2018)

    Google Scholar 

  32. H. Farokhi, M.H. Ghayesh, A. Gholipour, S. Hussain, Int. J. Eng. Sci. 112, 1 (2017)

    Google Scholar 

  33. H. Farokhi, M.H. Ghayesh, S. Hussain, Int. J. Eng. Sci. 106, 29 (2016)

    Google Scholar 

  34. C. Thongyothee, S. Chucheepsakul, T. Li, Adv. Mater. Res. 747, 257 (2013)

    Google Scholar 

  35. M. Ece, M. Aydogdu, Acta Mech. 190, 185 (2007)

    Google Scholar 

  36. L. Wang, Physica E 41, 1835 (2009)

    ADS  Google Scholar 

  37. H.-L. Lee, W.-J. Chang, J. Appl. Phys. 103, 024302 (2008)

    ADS  Google Scholar 

  38. Y. Zhang, G. Liu, X. Xie, Phys. Rev. B 71, 195404 (2005)

    ADS  Google Scholar 

  39. M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour., Mech. Adv. Mater. Struct. 26, 1469 (2019)

    Google Scholar 

  40. M. Farajpour, A. Shahidi, A. Farajpour., Eur. Phys. J. Plus 134, 218 (2019)

    Google Scholar 

  41. L. Li, X. Li, Y. Hu, Int. J. Eng. Sci. 102, 77 (2016)

    Google Scholar 

  42. M. Simşek, Int. J. Eng. Sci. 105, 12 (2016)

    Google Scholar 

  43. L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)

    Google Scholar 

  44. M.H. Ghayesh, H. Farokhi, A. Farajpour, Eur. Phys. J. Plus 134, 179 (2019)

    Google Scholar 

  45. A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Mech. Sci. 150, 510 (2019)

    Google Scholar 

  46. H.-L. Lee, W.-J. Chang, Physica E 41, 529 (2009)

    ADS  Google Scholar 

  47. M. Rafiei, S.R. Mohebpour, F. Daneshmand, Physica E 44, 1372 (2012)

    ADS  Google Scholar 

  48. A. Farajpour, A. Rastgoo, M. Farajpour, Compos. Struct. 180, 179 (2017)

    Google Scholar 

  49. H. Askari, E. Esmailzadeh, Compos. Part B: Eng. 113, 31 (2017)

    Google Scholar 

  50. W. Xia, L. Wang, Comput. Mater. Sci. 49, 99 (2010)

    Google Scholar 

  51. F. Liang, Y. Su, Appl. Math. Model. 37, 6821 (2013)

    ADS  MathSciNet  Google Scholar 

  52. M.H. Ghayesh, Int. J. Mech. Sci. 140, 339 (2018)

    Google Scholar 

  53. M.H. Ghayesh, Int. J. Eng. Sci. 124, 115 (2018)

    Google Scholar 

  54. M.H. Ghayesh, H. Farokhi, A. Gholipour, Int. J. Eng. Sci. 110, 35 (2017)

    Google Scholar 

  55. M.H. Ghayesh, H. Farokhi, A. Gholipour, Int. J. Mech. Sci. 122, 370 (2017)

    Google Scholar 

  56. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 99, 39 (2016)

    Google Scholar 

  57. H. Farokhi, M.H. Ghayesh, Int. J. Mech. Mater. Des. 13, 43 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farajpour.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zi Shao Ong, O., Yee, K., Farajpour, A. et al. Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes. Eur. Phys. J. Plus 134, 549 (2019). https://doi.org/10.1140/epjp/i2019-12904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12904-7

Navigation