Skip to main content
Log in

Fabrication and characterization of crystalline Bi2TeO5 - Bi4Si3O12 - SiO2 nanocomposite

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The matrix nanocomposite described here is fabricated using a reactive melt infiltration process exploiting crystalline bismuth tellurite (Bi2TeO5) powder and porous silica dioxide (SiO2) matrix as original components. The original matrix, that is composed of regularly arranged amorphous SiO2 spheres, and is known as synthetic opal, reacts with the molten Bi2TeO5, forming three components (Bi2TeO5, bismuth orthosilicate (Bi4Si3O12), and \( \alpha\)-cristobalite) when cooled down to room temperature. The first two components can be considered as a set of nanocrystals with an average linear size more than 30nm and lattice parameters changed in comparison with those in a single crystal lattice. The \( \alpha\)-cristobalite component is formed rather as a network at the sites of amorphous SiO2 spheres whose presence in the obtained composite is not detected. A dominant role of bismuth ions in breaking the Si-O-Si bonds in a bridge-like structure of amorphous SiO2 spheres is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton and Oxford, 2008)

  2. A. Blanco, C. Lopez, Annu. Rev. Nano Res. 1, 81 (2006)

    Article  Google Scholar 

  3. E. Armstrong, C. O’Dwyer, J. Mater. Chem. 3, 6109 (2015)

    Article  Google Scholar 

  4. D.A. Kurdyukov et al., Phys. Solid State 56, 1033 (2014)

    Article  ADS  Google Scholar 

  5. A.S. Salasyuk et al., Phys. Solid State 52, 1170 (2010)

    Article  ADS  Google Scholar 

  6. D.A. Kurdyukov et al., Phys. Solid State 58, 1216 (2016)

    Article  ADS  Google Scholar 

  7. E.Yu. Stovpiaga et al., Phys. Solid State 59, 1623 (2017)

    Article  ADS  Google Scholar 

  8. M. Derhachov et al., Acta Phys. Pol. A 113, 847 (2018)

    Article  Google Scholar 

  9. V. Moiseienko, Springer Proceedings in Physics, edited by O. Fesenko, L. Yatsenko, Vol. 195 (Springer, Berlin, Heidelberg, 2017)

  10. V.S. Gorelik et al., J. Adv. Dielectr. 7, 1750038 (2017)

    Article  ADS  Google Scholar 

  11. B. Abu Sal et al., Ukr. J. Phys. Opt. 14, 119 (2013)

    Article  Google Scholar 

  12. A.E. Aliev et al., Phys. Solid State 45, 61 (2003)

    Article  ADS  Google Scholar 

  13. G.A. Emel’chenko et al., Semiconductors 39, 1328 (2005)

    Article  ADS  Google Scholar 

  14. R.G. Shimmin et al., Chem. Mater. 19, 2102 (2007)

    Article  Google Scholar 

  15. V. Moiseyenko et al., Ukr. J. Phys. Opt. 14, 225 (2013)

    Article  Google Scholar 

  16. V. Moiseyenko et al., Ukr. J. Phys. Opt. 11, 2 (2010)

    Article  Google Scholar 

  17. D.A. Kurdyukov, N.F. Kartenko, V.G. Golubev, J. Alloys Comps. 492, 611 (2010)

    Article  Google Scholar 

  18. J.C. Lytle, A. Stein, Annu. Rev. Nano Res. 1, 1 (2006)

    Article  Google Scholar 

  19. S.O. Yurchenko et al., J. Phys. D 50, 055105 (2017)

    Article  ADS  Google Scholar 

  20. V.S. Gorelik et al., J. Russian Laser Res. 37, 254 (2016)

    Article  Google Scholar 

  21. V.S. Gorelik et al., Inorg. Mater. 51, 419 (2015)

    Article  Google Scholar 

  22. K.I. Zaytsev, S.O. Yurchenko, Appl. Phys. Lett. 105, 051902 (2014)

    Article  ADS  Google Scholar 

  23. V.N. Moiseyenko et al., Opt. Spectr. 112, 198 (2012)

    Article  ADS  Google Scholar 

  24. V.M. Masalov et al., Nanotechnology 22, 275718 (2011)

    Article  Google Scholar 

  25. D. Mercurio et al., Mater. Chem. Phys. 9, 467 (1983)

    Article  Google Scholar 

  26. K.M. Ok, S.P. Bhuvanesh, P. Shiv Halasyamani, Inorg. Chem. 40, 1978 (2001)

    Article  Google Scholar 

  27. I. Földvári et al., Opt. Commun. 177, 105 (2000)

    Article  ADS  Google Scholar 

  28. G. Mandula et al., Opt. Mater. 1, 161 (1992)

    Article  ADS  Google Scholar 

  29. S. Stefanovich et al., Ferroelectrics 241, 303 (2000)

    Article  Google Scholar 

  30. W. Stöber, A. Fink, E. Bohn, J. Coll. Interface Sci. 26, 62 (1968)

    Article  ADS  Google Scholar 

  31. B.D. Cullity, Elements of X-ray diffraction, 2nd ed. (Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1978)

  32. H. Liu, C. Kuo, J. Mater. Sci. Technol. 13, 145 (1997)

    Article  Google Scholar 

  33. K.V. Domoratskii et al., Phys. Solid State 42, 1443 (2000)

    Article  ADS  Google Scholar 

  34. R.S. Klein et al., J. Phys.: Condens. Matter 10, 3659 (1999)

    ADS  Google Scholar 

  35. B. Mihailova, M. Gospodinov, L. Konstantinov, J. Phys. Chem. Solids 60, 1821 (1999)

    Article  ADS  Google Scholar 

  36. J.C. Champarnaud-Mesjard et al., J. Phys. Chem. Solids 61, 1499 (2000)

    Article  ADS  Google Scholar 

  37. F.D. Hardcastle, I.E. Wachs, J. Solid State Chem. 97, 319 (1992)

    Article  ADS  Google Scholar 

  38. K.J. Kingma, R.J. Hemly, Am. Mineral. 79, 269 (1994)

    Google Scholar 

  39. E. Denisov et al., Phys. Solid State 41, 1306 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhailo Derhachov.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derhachov, M., Moiseienko, V., Kutseva, N. et al. Fabrication and characterization of crystalline Bi2TeO5 - Bi4Si3O12 - SiO2 nanocomposite. Eur. Phys. J. Plus 134, 370 (2019). https://doi.org/10.1140/epjp/i2019-12898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12898-0

Navigation