Skip to main content

Advertisement

Log in

Identification of hysteresis models using real-coded genetic algorithms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Finding an accurate model to present the hysteresis nonlinearities behavior of the smart actuator has attracted the attention of the researchers in recent years, since an accurate model has an essential role in the position control application of these actuators. Different models have been developed to describe the hysteresis nonlinearities, the generalized Prandtl-Ishlinskii (GPI) model is one of the most popular used models. This model uses the play operators represented by the threshold values and weights integrated with the odd envelope functions to characterize the hysteresis nonlinearities of smart actuators. The contribution of this paper proposes three different approaches using the Real-Coded Genetic Algorithm (RCGA) for the parameters identification of the Generalized Prandtl-Ishlinskii (GPI) model. In Approach 1, the thresholds and the values of the weights are calculated based on the proposed formulas with the unknown parameters to be identified using RCGA. In Approach 2, the thresholds values are calculated based on the proposed formula with the unknown parameters to be identified using RCGA and the values of the weights are identified directly using RCGA. In Approach 3, the thresholds and the values of the weights are identified directly using RCGA. Also, RCGA was used to identify the values of the coefficients of the envelope functions for all approaches. All approaches are tested through four different examples. Two examples are simulated examples that have linear and tangent hyperbolic envelope functions. Moreover, the other two examples represent experimental data obtained for a piezoelectric actuator and a shape alloy memory (SMA) actuator. The simulation results are carried through by the statistical and convergence analysis of the proposed approaches. The comparison and analysis show that three different approaches can be employed for modeling hysteresis nonlinearities with minimum differences between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lam, H. Chan, Appl. Phys. A 81, 1451 (2005)

    ADS  Google Scholar 

  2. H. Wu, L. Tang, Y. Yang, C.K. Soh, J. Intell. Mater. Syst. Struct. 25, 1875 (2014)

    Google Scholar 

  3. C. Zhou, Y. Zhang, J. Intell. Mater. Syst. Struct. 25, 2082 (2014)

    MathSciNet  Google Scholar 

  4. S. Hu, H. Li, H. Tzou, J. Intell. Mater. Syst. Struct. 25, 832 (2014)

    Google Scholar 

  5. Y. Yin, H. Ye, W. Zhan, L. Hong, H. Ma, J. Xu, Sensors Actuat. A 171, 332 (2011)

    Google Scholar 

  6. W. Zhang, R.E. Eitel, J. Intell. Mater. Syst. Struct. 24, 1637 (2013)

    Google Scholar 

  7. G. Gautschi, in Piezoelectric Sensorics (Springer, 2002) pp. 73--91

  8. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2, 257 (1998)

    Google Scholar 

  9. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai, O. Fukuda, N. Ueno, J. Appl. Phys. 100, 114318 (2006)

    ADS  Google Scholar 

  10. L.P. Wang, R.A. Wolf, Y. Wang, K.K. Deng, L. Zou, R.J. Davis, S. Trolier-McKinstry, J. Microelectromech. Syst. 12, 433 (2003)

    Google Scholar 

  11. F. Levinzon, Piezoelectric Accelerometers with Integral Electronics (Springer, 2015)

  12. H. Li, C. Tian, Z.D. Deng, Appl. Phys. Rev. 1, 041301 (2014)

    ADS  Google Scholar 

  13. M. Pozzi, M. Zhu, in Advances in Energy Harvesting Methods (Springer, 2013) pp. 119--140

  14. K. Uchino, Smart Mater. Struct. 7, 273 (1998)

    ADS  Google Scholar 

  15. J.G. Smits, Sensors Actuat. A 21, 203 (1990)

    Google Scholar 

  16. S. Herold, D. Mayer, Adaptive piezoelectric absorber for active vibration control, in Actuators, Vol. 5 (Multidisciplinary Digital Publishing Institute, 2016) p. 7

  17. M.H. Wu, L. Schetky, Industrial applications for shape memory alloys, in Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Vol. 171 (2000)

  18. Y. Furuya, J. Intell. Mater. Syst. Struct. 7, 321 (1996)

    Google Scholar 

  19. D. Stoeckel, Mater. Design 11, 302 (1990)

    Google Scholar 

  20. D.J. Leo, C. Weddle, G. Naganathan, S.J. Buckley, Vehicular applications of smart material systems, in Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 3326 (International Society for Optics and Photonics, 1998) pp. 106--116

  21. D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng., Part G 221, 535 (2007)

    Google Scholar 

  22. L.M. Schetky, Mater. Design 12, 29 (1991)

    Google Scholar 

  23. C. Bil, K. Massey, E.J. Abdullah, J. Intell. Mater. Syst. Struct. 24, 879 (2013)

    Google Scholar 

  24. M. Kohl, Shape Memory Microactuators (Springer Science & Business Media, 2013)

  25. H. Kahn, M. Huff, A. Heuer, J. Micromech. Microeng. 8, 213 (1998)

    ADS  Google Scholar 

  26. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Mater. Design 33, 577 (2012)

    Google Scholar 

  27. H. Fujita, H. Toshiyoshi, Microelectron. J. 29, 637 (1998)

    Google Scholar 

  28. M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A review of shape memory alloy actuators in robotics, in Robot Soccer World Cup (Springer, 2010) pp. 206--217

  29. M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Ind. Robot 34, 285 (2007)

    Google Scholar 

  30. Y. Furuya, H. Shimada, Mater. Design 12, 21 (1991)

    Google Scholar 

  31. L. Petrini, F. Migliavacca, J. Metall. 2011, 501483 (2011)

    Google Scholar 

  32. L. Machado, M. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)

    Google Scholar 

  33. D. Mantovani, Jom 52, 36 (2000)

    Google Scholar 

  34. T. Duerig, A. Pelton, D. Stöckel, Mater. Sci. Eng. A 273, 149 (1999)

    Google Scholar 

  35. R.B. Gorbet, University of Waterloo (1997)

  36. R. Gorbet, D. Wang, K. Morris, Preisach model identification of a two-wire SMA actuator, in Robotics and Automation, Proceedings, 1998 IEEE International Conference on (IEEE, 1998) pp. 2161--2168

  37. I. Mayergoyz, IEEE Trans. Magn. 22, 603 (1986)

    ADS  Google Scholar 

  38. X. Tan, J.S. Baras, IEEE Trans. Autom. Control 50, 827 (2005)

    Google Scholar 

  39. S.R. Viswamurthy, A.K. Rao, R. Ganguli, Smart Mater. Struct. 16, 1109 (2007)

    ADS  Google Scholar 

  40. M. Al Janaideh, S. Rakheja, C.Y. Su, A generalized Prandtl-Ishlinskii model for characterizing rate dependent hysteresis, in IEEE International Conference on Control Applications, 2007, CCA 2007 (IEEE, 2007) pp. 343--348

  41. M. Al Janaideh, S. Rakheja, C.Y. Su, Smart Mater. Struct. 18, 045001 (2009)

    ADS  Google Scholar 

  42. M. Al Janaideh, S. Rakheja, C.Y. Su, Mechatronics 19, 656 (2009)

    Google Scholar 

  43. M. Al Janaideh, S. Rakheja, C.Y. Su, IEEE/ASME Trans. Mechatron. 16, 734 (2011)

    Google Scholar 

  44. M. Al Janaideh, P. Krejči, Physica B 406, 1528 (2011)

    ADS  Google Scholar 

  45. M. Al Janaideh, P. Krejči, Physica B 407, 1365 (2012)

    ADS  Google Scholar 

  46. M. Al Janaideh, P. Krejči, IEEE/ASME Trans. Mechatron. 18, 1498 (2013)

    Google Scholar 

  47. J. Zhang, E. Merced, N. Sepúlveda, X. Tan, Smart Mater. Struct. 23, 125017 (2014)

    ADS  Google Scholar 

  48. M.J. Yang, C.X. Li, G.Y. Gu, L.M. Zhu, Smart Mater. Struct. 24, 125006 (2015)

    ADS  Google Scholar 

  49. J. Gan, X. Zhang, H. Wu, Rev. Sci. Instrum. 87, 035002 (2016)

    ADS  Google Scholar 

  50. M. Quant, H. Elizalde, A. Flores, R. Ramírez, P. Orta, G. Song, Smart Mater. Struct. 18, 125011 (2009)

    ADS  Google Scholar 

  51. J. Minase, T.F. Lu, B. Cazzolato, S. Grainger, Int. J. Adv. Manufact. Technol. 46, 913 (2010)

    Google Scholar 

  52. E.N. Chatzi, A.W. Smyth, S.F. Masri, Struct. Safety 32, 326 (2010)

    Google Scholar 

  53. Y. Cao, X.B. Chen, IEEE/ASME Trans. Mechatron. 17, 737 (2012)

    Google Scholar 

  54. L. Juhász, J. Maas, B. Borovac, Mechatronics 21, 329 (2011)

    Google Scholar 

  55. Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, S. Fatikow, IEEE/ASME Trans. Mechatron. 18, 981 (2013)

    Google Scholar 

  56. J. Zhang, Y. Yin, J. Zhu, Sensors Actuat. A 201, 264 (2013)

    Google Scholar 

  57. J. Zhang, E. Merced, N. Sepúlveda, X. Tan, Optimal compression of a generalized Prandtl-Ishlinskii operator in hysteresis modeling, in ASME 2013 Dynamic Systems and Control Conference (American Society of Mechanical Engineers, 2013)

  58. J. Zhang, E. Merced, N. Sepúlveda, X. Tan, Automatica 57, 170 (2015)

    Google Scholar 

  59. J.L. Ha, Y.S. Kung, R.F. Fung, S.C. Hsien, Sensors Actuat. A 132, 643 (2006)

    Google Scholar 

  60. K. Chwastek, J. Szczyglowski, Math. Comput. Simul. 71, 206 (2006)

    Google Scholar 

  61. N.M. Kwok, Q.P. Ha, M.T. Nguyen, J. Li, B. Samali, ISA Trans. 46, 167 (2007)

    Google Scholar 

  62. J. Zheng, S. Cao, H. Wang, W. Huang, Neurocomputing 70, 749 (2007)

    Google Scholar 

  63. M. Ye, X. Wang, Parameter identification of hysteresis model with improved particle swarm optimization, in Control and Decision Conference, 2009, CCDC'09, Chinese (IEEE, 2009) pp. 415--419

  64. L.d.S. Coelho, F.A. Guerra, J.V. Leite, IEEE Trans. Magn. 48, 283 (2012)

    ADS  Google Scholar 

  65. L. Knypiński, L. Nowak, P. Sujka, K. Radziuk, Arch. Electric. Eng. 61, 139 (2012)

    Google Scholar 

  66. M.J. Yang, G.Y. Gu, L.M. Zhu, Sensors Actuat. A 189, 254 (2013)

    Google Scholar 

  67. M.A. Rahman, A. Al Mamun, K. Yao, Y. Daud, Particle swarm optimization based modeling and compensation of hysteresis of PZT micro-actuator used in high precision dual-stage servo system, in 2014 IEEE International Conference on Mechatronics and Automation (ICMA) (IEEE, 2014) pp. 452--457

  68. Y. Xie, J.L. Fu, B.Y. Chen, Adv. Mech. Eng., https://doi.org/10.1177/1687814017702813 (2017)

    Google Scholar 

  69. A. Adly, S. Abd-El-Hafiz, IEEE Trans. Magn. 34, 629 (1998)

    ADS  Google Scholar 

  70. X. Dang, Y. Tan, Sensors Actuat. A 121, 535 (2005)

    Google Scholar 

  71. X. Zhao, Y. Tan, Sensors Actuat. A 126, 306 (2006)

    Google Scholar 

  72. J.P. Lien, T. Fang, G.D. Buckner, Smart Mater. Struct. 20, 065007 (2011)

    ADS  Google Scholar 

  73. M. Brokate, J. Sprekels, Hysteresis and phase transitions, Vol. 121 (Springer Science & Business Media, 2012)

  74. A. Janaideh, M. Farhan, Thesis (2009)

  75. A. Visintin, Differential Models of Hysteresis, Vol. 111 (Springer Science & Business Media, 2013)

  76. M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with Hysteresis (Springer Science & Business Media, 2012)

  77. M. Al Janaideh, S. Rakheja, C.Y. Su, Int. J. Adv. Mechatron. Syst. 1, 32 (2008)

    Google Scholar 

  78. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992)

  79. S. Picek, D. Jakobovic, M. Golub, On the recombination operator in the real-coded genetic algorithms, in 2013 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2013) pp. 3103--3110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaher M. Momani.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasawneh, H.J., Abo-Hammour, Z.S., Al Saaideh, M.I. et al. Identification of hysteresis models using real-coded genetic algorithms. Eur. Phys. J. Plus 134, 507 (2019). https://doi.org/10.1140/epjp/i2019-12883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12883-7

Navigation