Skip to main content
Log in

The nonextensive Bose-Einstein condensation and photon gas with parameter transformation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The nonextensive boson system is revisited with the statistical ensemble theory, where the fundamental grand canonical distribution is derived from the equiprobability principle. By recourse to the approach of parameter transformation, one familiar and concise statistical formula for bosons is deduced, in an accurate fashion. Then the Bose-Einstein condensation phenomenon is re-discussed. The results show that the critical temperature is dependent on the nonextensive parameter \( \nu\) , and in the generalized expression of the heat capacity for the condensated phase of boson systems there exists one additional term, obeying the T3 law. By use of the statistical formula, the nonextensive photon gas is also researched. The internal energy and heat capacity for the nonextensive photon gas exhibit a similar dependence on the temperature to the classical photon gas, apart from a coefficient correction dependent on the parameter \( \nu\) . The Gibbs function for the nonextensive photon gas is still zero, showing that the photon field is also at thermal equilibrium, like the situation of classical photon field. The entropy of photon field can be calculated through the integral of the nonextensive quantum statistics formula and can also be derived from the original definition of Tsallis entropy, by recourse to the direct parameter transformation. This seems to indicate the validity of the treatment technique for the nonextensive quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Tsallis, Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  2. J.L. Du, Europhys. Lett. 67, 893 (2004)

    Google Scholar 

  3. M.P. Leubner, Astrophys. J. 632, L1 (2005)

    ADS  Google Scholar 

  4. J.L. Du, New Astron. 12, 60 (2006)

    ADS  Google Scholar 

  5. J.L. Du, Astrophys. Space Sci. 312, 47 (2007)

    Google Scholar 

  6. J.A.S. Lima, R. Silva Jr., J. Santos, Phys. Rev. E 61, 3260 (2000)

    ADS  Google Scholar 

  7. J.L. Du, Phys. Lett. A 329, 262 (2004)

    ADS  Google Scholar 

  8. L.Y. Liu, J.L. Du, Physica A 387, 4821 (2008)

    ADS  Google Scholar 

  9. H.N. Yu, J.L. Du, Ann. Phys. 350, 302 (2014)

    ADS  Google Scholar 

  10. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    ADS  Google Scholar 

  11. B. Liu, J. Goree, Y. Feng, Phys. Rev. E 78, 046403 (2008)

    ADS  Google Scholar 

  12. T. Oikonomou, A. Provata, U. Tirnakli, Physica A 387, 2653 (2008)

    ADS  Google Scholar 

  13. O.J. Rolinski, A. Martin, D.J.S. Birch, Ann. N. Y. Acad. Sci. 1130, 314 (2008)

    ADS  Google Scholar 

  14. K. Eftaxias, G. Minadakis, S.M. Potirakis, G. Balasis, Physica A 392, 497 (2013)

    ADS  Google Scholar 

  15. E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991)

    ADS  Google Scholar 

  16. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    ADS  Google Scholar 

  17. S. Martinez, F. Nicolás, F. Pennini et al., Physica A 286, 489 (2000)

    ADS  MathSciNet  Google Scholar 

  18. A.R. Plastino, C. Anteneodo, Ann. Phys. 255, 250 (1997)

    ADS  Google Scholar 

  19. S. Abe, A.K. Rajagopal, Phys. Lett. A 272, 341 (2000)

    ADS  MathSciNet  Google Scholar 

  20. V. Garcia-Morales, J. Pellicer, Physica A 361, 161 (2006)

    ADS  Google Scholar 

  21. R.A. Treumann, C.H. Jaroschek, Phys. Rev. Lett. 100, 155005 (2008)

    ADS  Google Scholar 

  22. C. Tsallis, F.C.S. Barreto, E.D. Loh, Phys. Rev. E 52, 1447 (1995)

    ADS  Google Scholar 

  23. D.F. Torres, H. Vucetich, A. Plastino, Phys. Rev. Lett. 79, 1588 (1997)

    ADS  Google Scholar 

  24. U. Tirnakli, D.F. Torres, Eur. Phys. J. B 14, 691 (2000)

    ADS  Google Scholar 

  25. F. Büyükiliç, D. Demirhan, A. Güleç, Phys. Lett. A 197, 209 (1995)

    ADS  MathSciNet  Google Scholar 

  26. U. Tirnakli, F. Büyükkiliç, D. Demirhan, Physica A 240, 657 (1997)

    ADS  Google Scholar 

  27. Q.A. Wang, A. Le Mehaute, Phys. Lett. A 242, 301 (1998)

    ADS  Google Scholar 

  28. Buyukkilic F.F. Buyukkilic, I. Sokmen, D. Demirhan, Chaos, Solitons Fractals 13, 749 (2002)

    ADS  Google Scholar 

  29. U. Tirnakli, D.F. Torres, Physica A 268, 225 (1999)

    ADS  Google Scholar 

  30. M.E. Pessah, D.F. Torres, H. Vucetich, Physica A 297, 164 (2001)

    ADS  Google Scholar 

  31. D.F. Torres, U. Tirnakli, Physica A 261, 499 (1998)

    ADS  Google Scholar 

  32. C. Ou, Chen J. Phys. Lett. A 342, 107 (2005)

    ADS  Google Scholar 

  33. H.G. Miller, F.C. Khanna, R. Teshima et al., Phys. Lett. A 359, 357 (2006)

    ADS  MathSciNet  Google Scholar 

  34. I.S. Oliveira, Eur. Phys. J. B 14, 43 (2000)

    ADS  Google Scholar 

  35. H. Hasegawa, Physica A 388, 2781 (2009)

    ADS  Google Scholar 

  36. L.H.C.M. Nunes, E.V.L. De Mello, Physica A 296, 106 (2001)

    ADS  Google Scholar 

  37. H. Uys, H.G. Miller, F.C. Khanna, Phys. Lett. A 289, 264 (2001)

    ADS  Google Scholar 

  38. M. Portesi, A. Plastino, C. Tsallis, Phys. Rev. E 52, R3317 (1995)

    ADS  Google Scholar 

  39. M.S. Reis, J.P. Araújo, V.S. Amaral et al., Phys. Rev. B 66, 134417 (2002)

    ADS  Google Scholar 

  40. M.S. Reis, V.S. Amaral, J.P. Araújo et al., Phys. Rev. B 68, 014404 (2003)

    ADS  Google Scholar 

  41. M.S. Reis, V.S. Amaral, R.S. Sarthour et al., Phys. Rev. B 73, 092401 (2006)

    ADS  Google Scholar 

  42. D. Prato, Phys. Lett. A 203, 165 (1995)

    ADS  MathSciNet  Google Scholar 

  43. A.K. Rajagopal, R.S. Mendes, E.K. Lenzi, Phys. Rev. Lett. 80, 3907 (1998)

    ADS  Google Scholar 

  44. E.K. Lenzi, R.S. Mendes, Phys. Lett. A 250, 270 (1998)

    ADS  Google Scholar 

  45. S. Martinez, F. Pennini, A. Plastino et al., Physica A 309, 85 (2002)

    ADS  Google Scholar 

  46. C. Tsallis, Quim. Nova 17, 468 (1994)

    Google Scholar 

  47. M.A. Moret, P.M. Bish, F.M.C. Vieira, Phys. Rev. E 57, R2535 (1998)

    ADS  Google Scholar 

  48. Y. Zheng, J.J. Du, Continuum Mech. Thermodyn. 28, 1791 (2016)

    ADS  MathSciNet  Google Scholar 

  49. Wang Zhicheng, Thermodynamics and Statistical Physics, third edition (Higher Education Press, 2013)

  50. Y. Zheng, EPL 101, 29002 (2013)

    ADS  Google Scholar 

  51. Y. Zheng, J.L. Du, Int. J. Mod. Phys. B 21, 947 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Two of the authors, PM and YZ, contributed equally to this work.

Corresponding author

Correspondence to Yahui Zheng.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Zheng, Y. & Qi, G. The nonextensive Bose-Einstein condensation and photon gas with parameter transformation. Eur. Phys. J. Plus 134, 502 (2019). https://doi.org/10.1140/epjp/i2019-12882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12882-8

Navigation