Skip to main content
Log in

Multidimensional freak waves in electron depleted dusty magnetoplasmas having superthermal ion with two temperatures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The three-dimensional modulational instability (MI) and the associated electrostatic freak waves in electron depleted dusty magnetoplasmas having two temperature ions obeying Kappa distribution with transverse plane perturbations are investigated. For this purpose, the three-dimensional (3D) nonlinear Schrödinger equation (NLSE) is derived using the multi-scale perturbation technique. The regions of stable and unstable structures are determined precisely depending on a new criterium different from that of the one-dimensional (1D) NLSE. In the unstable regions the first- and second-order rogue waves are examined. The dependence of MI and freak waves on the relevant plasma parameters, namely, modulational obliqueness, cold ion concentration, cold-to-hot ion temperature ratio, dust gyrofrequency, and the spectral indices of the cold and hot ions are investigated. The present investigation is useful in space and laboratory magnetoplasmas, for instance, Geotail spacecraft observations seen in Earth’s magnetotail, solar wind, interstellar medium, and in the magnetosphere of Jupiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (IOP Publishing, Bristol, 2002)

  2. S. Parveen, S. Mahmood, M. Adnan, A. Qamar, J. Phys. Soc. Jpn. 87, 014502 (2018)

    ADS  Google Scholar 

  3. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)

    ADS  Google Scholar 

  4. N.S. Sainia, I. Kourakis, Phys. Plasmas 15, 123701 (2008)

    ADS  Google Scholar 

  5. I. Kourakis, P.K. Shukla, Phys. Plasmas 10, 3459 (2003)

    ADS  Google Scholar 

  6. A. Barkan, R.L. Merlino, N. D’Angelo, Phys. Plasmas 2, 3563 (1995)

    ADS  Google Scholar 

  7. P.K. Shukla, Phys. Scr. 45, 508 (1992)

    ADS  Google Scholar 

  8. F. Melandso, P.K. Shukla, Planet. Space Sci. 43, 635 (1995)

    ADS  Google Scholar 

  9. A. Homann, A. Melzer, S. Peters, A. Piel, Phys. Rev. E 56, 7138 (1997)

    ADS  Google Scholar 

  10. Y. Ghai, N. Kaur, K. Singh, N.S. Saini, Plasma Sci. Technol. 20, 074005 (2018)

    ADS  Google Scholar 

  11. Y. Ghai, N.S. Saini, B. Eliasson, Phys. Plasmas 25, 013704 (2018)

    ADS  Google Scholar 

  12. M.A. Hellberg, R.L. Mace, R.J. Armstrong, G. Karlstad, J. Plasma Phys. 64, 433 (2000)

    ADS  Google Scholar 

  13. A.T.Y. Lui, S.M. Krimigis, T.P. Armstrong, J. Geophys. Res. 87, 8315 (1982)

    ADS  Google Scholar 

  14. M.P. Leubner, J. Geophys. Res. 87, 6335 (1982)

    ADS  Google Scholar 

  15. T.P. Armstrong, J. Geophys. Res. 88, 8893 (1983)

    ADS  Google Scholar 

  16. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    ADS  Google Scholar 

  17. J.D. Scudder, Astrophys. J. 398, 299 (1992)

    ADS  Google Scholar 

  18. J.D. Scudder, Astrophys. J. 398, 319 (1992)

    ADS  Google Scholar 

  19. K. Seki et al., Nature 422, 589 (2003)

    ADS  Google Scholar 

  20. M.N. Nishino, T. Terasawa, M. Hoshino, COSPAR Colloq. Ser. 16, 28 (2005)

    Google Scholar 

  21. M. Shahmansouri, H. Alinejad, Phys. Plasmas 20, 033704 (2013)

    ADS  Google Scholar 

  22. S. Mayout, M. Tribeche, Astrophys. Space Sci. 335, 443 (2011)

    ADS  Google Scholar 

  23. M. Shahmansouri, M. Tribeche, Astrophys. Space Sci. 342, 87 (2012)

    ADS  Google Scholar 

  24. J. Borhanian, M. Shahmansouri, Phys. Plasmas 20, 013707 (2013)

    ADS  Google Scholar 

  25. Y. Ghai, N.S. Saini, Astrophys. Space Sci. 362, 58 (2017)

    ADS  Google Scholar 

  26. Y. Ghai, N. Kaur, K. Singh, N.S. Saini, Plasma Sci. Technol. 20, 074005 (2018)

    ADS  Google Scholar 

  27. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theorem (Springer, Berlin, 2009)

  28. A.M. Wazwaz, Appl. Math. Comput. 219, 2535 (2012)

    MathSciNet  Google Scholar 

  29. X. Lü, F. Lin, Commun. Nonlinear Sci. Numer. Simul. 32, 241 (2016)

    ADS  MathSciNet  Google Scholar 

  30. S.A. El-Tantawy, W.M. Moslem, R. Schlickeiser, Phys. Scr. 90, 085606 (2015)

    ADS  Google Scholar 

  31. S.A. El-Tantawy, A.M. Wazwaz, R. Schlickeiser, Plasma Phys. Controll. Fusion 57, 125012 (2015)

    ADS  Google Scholar 

  32. N.A. Chowdhury, A. Mannan, A.A. Mamun, Phys. Plasmas 24, 113701 (2017)

    ADS  Google Scholar 

  33. D. Peregrine, J. Austral. Math Soc. Ser. B 25, 16 (1983)

    MathSciNet  Google Scholar 

  34. M.S. Ruderman, T. Talipova, E. Pelinovsky, J. Plasma Phys. 74, 639 (2008)

    ADS  Google Scholar 

  35. M.S. Ruderman, Eur. Phys. J. ST 185, 57 (2010)

    Google Scholar 

  36. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)

    ADS  MathSciNet  Google Scholar 

  37. S.A. El-Tantawy, E.I. El-Awady, R. Schlickeiser, Astrophys. Space Sci. 360, 49 (2015)

    ADS  Google Scholar 

  38. S.A. El-Tantawy, Astrophys. Space Sci. 361, 164 (2016)

    ADS  Google Scholar 

  39. M.H. Rahman, A. Mannan, N.A. Chowdhury, A.A. Mamun, Phys. Plasmas 28, 102118 (2018)

    ADS  Google Scholar 

  40. S.A. El-Tantawy, E.I. El-Awady, R. Schlickeiser, Astrophys. Space Sci. 360, 49 (2015)

    ADS  Google Scholar 

  41. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    ADS  Google Scholar 

  42. S.K. Sharma, H. Bailung, J. Geophys. Res. Space Phys. 118, 919 (2013)

    ADS  Google Scholar 

  43. P. Pathak, S.K. Sharma, Y. Nakamura, H. Bailung, Phys. Plasmas 23, 022107 (2016)

    ADS  Google Scholar 

  44. Y.H. Ichikawa, T. Imamura, T. Taniuti, J. Phys. Soc. Jpn. 33, 189 (1972)

    ADS  Google Scholar 

  45. K. Shimizu, Y.H. Ichikawa, J. Phys. Soc. Jpn. 33, 789 (1972)

    ADS  Google Scholar 

  46. S. Ali Shan, S.A. El-Tantawy, Phys. Plasmas 23, 072112 (2016)

    ADS  Google Scholar 

  47. J.K. Xue, Phys. Lett. A 330, 390 (2004)

    ADS  Google Scholar 

  48. J.K. Xue, Phys. Plasmas 12, 062313 (2005)

    ADS  Google Scholar 

  49. Shalini, A.P. Misra, N.S. Saini, J. Theor. Appl. Phys. 11, 217 (2017)

    ADS  Google Scholar 

  50. S. Guo, Liquan Mei, Phys. Plasmas 21, 082303 (2014)

    ADS  Google Scholar 

  51. H.G. Abdelwahed, R. Sabry, Astrophys. Space Sci. 362, 92 (2017)

    ADS  Google Scholar 

  52. P. Sethi, N. Kaur, K. Singh, N.S. Saini, AIP Conf. Proc. 1925, 020013 (2018)

    Google Scholar 

  53. A.S. Bains, A.P. Misra, N.S. Saini, T.S. Gill, Phys. Plasmas 17, 012103 (2010)

    ADS  Google Scholar 

  54. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Bottai et al., Nature 458, 607 (2009)

    ADS  Google Scholar 

  55. V. Pierrard, M. Lazar, Sol. Phys. 267, 153 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. El-Tantawy.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almutlak, S.A., El-Tantawy, S.A., Ali Shan, S. et al. Multidimensional freak waves in electron depleted dusty magnetoplasmas having superthermal ion with two temperatures. Eur. Phys. J. Plus 134, 513 (2019). https://doi.org/10.1140/epjp/i2019-12881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12881-9

Navigation