Advertisement

Correlation \(\overline{\nu}_{p} - \sigma\) for U-Pu in the thermal and resonance neutron range via integral information

  • D. RochmanEmail author
  • A. Vasiliev
  • H. Ferroukhi
  • S. Pelloni
  • E. Bauge
  • A. Koning
Regular Article
  • 7 Downloads

Abstract.

This paper presents an application of the Backward-Forward Monte Carlo (BFMC) method using measured critical boron concentrations for a specific PWR cycle. The considered prior nuclear data are the fission cross sections, \(\overline{\nu}_{p}\) for 235U and 239Pu and the capture cross section of 238U. The posterior nuclear data exhibit cross-isotope correlations, moderate changes for the average quantities and reduced uncertainties. This work is the first one considering the BFMC method and an integral system mostly sensitive to thermal neutrons. It contributes to show the impact of integral experimental data for the evaluation of nuclear data and their covariance matrices, leading to cross-isotope correlations and a nuclear data uncertainty reduction.

References

  1. 1.
    T. Goorley, MCNP 6.1.1 - Beta release Notes, Los Alamos National Laboratory, Report LA-UR-14-24680 (June 2014)Google Scholar
  2. 2.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, Eur. Phys. J. N 3, 14 (2017)Google Scholar
  3. 3.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, G. Perret, Eur. Phys. J. N 4, 7 (2018)Google Scholar
  4. 4.
    C. De Saint Jean, P. Archier, E. Privas, G. Noguere, B. Habert, P. Tamagno, Nucl. Data Sheets 148, 338 (2018)CrossRefGoogle Scholar
  5. 5.
    D. Siefman, M. Hursin, D. Rochman, S. Pelloni, A. Pautz, Eur. Phys. J. Plus 133, 429 (2018)CrossRefGoogle Scholar
  6. 6.
    T. Kawano, K.M. Hanson, S. Frankle, P. Talou, M.B. Chadwick, R.C. Little, Nucl. Sci. Eng. 153, 1 (2006)CrossRefGoogle Scholar
  7. 7.
    O. Cabellos, L. Fiorito, EPJ Web of Conferences 211, 07008 (2019)CrossRefGoogle Scholar
  8. 8.
    A. Hoefer, O. Buss, M. Hennebach, M. Schmid, D. Porsch, Ann. Nucl. Energy 77, 514 (2015)CrossRefGoogle Scholar
  9. 9.
    E. Castro, C. Ahnert, O. Buss, N. Garcia-Herranz, A. Hoefer, D. Porsch, Ann. Nucl. Energy 85, 148 (2016)CrossRefGoogle Scholar
  10. 10.
    JEFF-3.3, Joint Evaluated Fission and Fusion File, OECD/NEA, https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html
  11. 11.
    D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Koning, D. Rochman J. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Koning, Eur. Phys. J. A 51, 184 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    E. Bauge, P. Dossantos-Uzarralde, J. Kor. Phys. Soc. 59, 1218 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P. Helgesson, H. Sjostrand, D. Rochman, Nucl. Data Sheets 145, 1 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Salvatores et al., Nucl. Data Sheets 118, 38 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Capote, D.L. Smith, Nucl. Data Sheets 109, 2725 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Capote, D. Smith, A. Trkov, M. Meghzifene, J. ASTM Int.  https://doi.org/10.1520/JAI104115 (2012)
  21. 21.
    D. Rochman, A.J. Koning, Nucl. Sci. Eng. 172, 287 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Pelloni, D. Rochman, Ann. Nucl. Energy 115, 323 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Helgesson, H. Sjostrand, Rev. Sci. Instrum. 88, 115114 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    G. Schnabel, H. Leeb, EPJ Web of Conferences 111, 09001 (2016)CrossRefGoogle Scholar
  25. 25.
    A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, S. Pelloni, A.J. Koning, J.Ch. Sublet, Eur. Phys. J. Plus 133, 537 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Rochman, A. Vasiliev, H. Ferroukhi, H. Dokhane, A. Koning, Ann. Nucl. Energy 112, 236 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Klein, L. Gallner, B. Krzykacz-Hausmann, I. Pasichnyk, A. Pautz, W. Zwermann, Influence of nuclear data covariance on reactor core calculations, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M& C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROMGoogle Scholar
  29. 29.
    C.J. Diez, O. Buss, A. Hoefer, D. Porsc, O. Cabellos, Ann. Nucl. Energy 77, 101 (2015)CrossRefGoogle Scholar
  30. 30.
    E. Castro, C. Ahnert, O. Buss, N. Garcia-Herranz, A. Hoefe, D. Porsch, Ann. Nucl. Energy 95, 148 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Aures, F. Bostelmann, M. Hursin, O. Leray, Ann. Nucl. Energy 94, 269 (2017)Google Scholar
  32. 32.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in Proceedings of the PHYSOR-2006 conference, ANS Topical Meeting on Reactor Physics, Vancouver, BC, Canada, September 10-14, 2006 (ANS, 2006) p. B144Google Scholar
  34. 34.
    T. Bahadir, S. Lindahl, Studsvik’s next generation nodal code SIMULATE-5, in Proceedings of the ANFM-2009 conference, Advances in Nuclear Fuel Management IV, Hilton Head Island, South Carolina, USA, April 12-15, 2009Google Scholar
  35. 35.
    G. Schnabel, Large Scale Bayesian Nuclear Data Evaluation with Consistent Model Defects, PhD thesis, TU Vienna, Austria, June 2015Google Scholar
  36. 36.
    M.B. Priestley, Spectral Analysis and Time Series 1 (Academix Press, 1982)Google Scholar
  37. 37.
    L. Kish, Survey Sampling (Wiley & Sons, Inc., NY, London, 1965)Google Scholar
  38. 38.
    O. Leray, H. Ferroukhi, M. Hursin, A. Vasiliev, D. Rochman, Ann. Nucl. Energy 110, 547 (2017)CrossRefGoogle Scholar
  39. 39.
    C. Demaziere, I. Pazsit, Nucl. Technol. 140, 147 (2002)CrossRefGoogle Scholar
  40. 40.
    A. Hoefer, O. Buss, Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment, in ANS Winter Meeting, Washington, D.C., October 29--November 2 (2017)Google Scholar
  41. 41.
    O. Cabellos, W. Castro, C. Ahnert, C. Holgado, Nucl. Eng. Technol. 46, 299 (2014)CrossRefGoogle Scholar
  42. 42.
    J.-Ch. Sublet et al., Eur. Phys. J. Plus 134, 350 (2019)CrossRefGoogle Scholar
  43. 43.
    A.D. Carlson, V.G. Pronyaev, R. Capote, G.M. Hale, Z.-P. Chen, I. Duran, F.-J. Hambsch, S. Kunieda, W. Mannhart, B. Marcinkevicius, R.O. Nelson, D. Neudecker, G. Noguere, M. Paris, S.P. Simakov, P. Schillebeeckx, D.L. Smith, X. Tao, A. Trkov, A. Wallner, W. Wang, Nucl. Data Sheets 148, 143 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Paul Scherrer InstitutVilligenSwitzerland
  2. 2.CEA, DAMDIFArpajon cedexFrance
  3. 3.Nuclear Data Section, International Atomic Energy Agency, ViennaAustria & Uppsala UniversityUppsalaSweden

Personalised recommendations