Skip to main content
Log in

From classical periodic orbits in integrable \( \pi\)-rational billiards to quantum energy spectrum

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present paper, we establish a remarkable connection between the length of the periodic orbit of a classical particle enclosed in a class of 2-dimensional planar billiards and the energy of a quantum particle confined to move in an identical region with infinitely high potential wall on the boundary. We observe that the quantum energy spectrum of the particle is in exact one-to-one correspondence with the spectrum of the amplitude squares of the periodic orbits of a classical particle for the class of integrable billiards considered. We have established the results by geometric constructions and exploiting the method of reflective tiling and folding of classical trajectories. We have further extended the method to 3-dimensional billiards, for which exact analytical results are scarcely available --exploiting the geometric construction, we determine the exact energy spectra of two new tetrahedral domains which we believe are integrable. We test the veracity of our results by comparing them with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lorentz, KNAW, Proc. 7, 438 (1905)

    Google Scholar 

  2. O. Bengtsson, J. Larsson, K.F. Berggren, Phys. Rev. E 71, 1 (2005)

    Article  Google Scholar 

  3. A. Kudrolli, S. Sridhar, A. Pandey, R. Ramaswamy, Phys. Rev. E 49, 11 (1993)

    Article  ADS  Google Scholar 

  4. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison- Wesley, Reading, 1997)

  5. Y.F. Chen, K.F. Huang, Y.P. Lan, Phys. Rev. E 66, 046215 (2002)

    Article  ADS  Google Scholar 

  6. Y.F. Chen, K.F. Huang, Phys. Rev. E 68, 066207 (2003)

    Article  ADS  Google Scholar 

  7. M.A. Doncheski, R.W. Robinett, Ann. Phys. 299, 208 (2002)

    Article  ADS  Google Scholar 

  8. S.L. Lin, F. Gao, Z.P. Hong, M.L. Du, Chin. Phys. Lett. 22, 9 (2005)

    Article  ADS  Google Scholar 

  9. C.C. Liu, T.H. Lu, Y.F. Chen, K.F. Huang, Phys. Rev. E 74, 046214 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y.F. Chen, Y.C. Lin, W.Z. Zhuang, H.C. Liang, K.W. Su, K.F. Huang, Phys. Rev. A 85, 043833 (2012)

    Article  ADS  Google Scholar 

  11. M. Wright, R. Weaver, New Directions in Linear Acoustics and Vibration: Quantum Chaos, Random Matrix Theory and Complexity (Cambridge University Press, Cambridge, 2010)

  12. E.G. Altmann, T. Friedrich, A.E. Motter, H. Kantz, A. Richter, Phys. Rev. E 77, 016205 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.W. McDonald, A.N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979)

    Article  ADS  Google Scholar 

  15. S. Tomsovic, E.J. Heller, Phys. Rev. Lett. 67, 664 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. G.M. Zaslavsky, Chaos in Dynamic Systems (Harwood, New York, 1985)

  17. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990)

  18. S. Sridhar, E.J. Heller, Phys. Rev. A 46, R1728 (1992)

    Article  ADS  Google Scholar 

  19. S. Tomsovic, E.J. Heller, Phys. Rev. E 47, 282 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Tomsovic, E.J. Heller, Phys. Rev. Lett. 70, 1405 (1993)

    Article  ADS  Google Scholar 

  21. M.V. Berry, J. Phys. A 10, 2083 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. R.W. Robinett, J. Math. Phys. 40, 101 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.W. Robinett, Phys. Rep. 392, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.W. Robinett, Surf. Rev. Lett. 05, 519 (1998)

    Article  ADS  Google Scholar 

  25. M.A. Doncheski, S. Heppelmann, R.W. Robinett, D.C. Tussey, Am. J. Phys. 71, 541 (2003)

    Article  ADS  Google Scholar 

  26. D.F. Styer, Am. J. Phys. 69, 56 (2001)

    Article  ADS  Google Scholar 

  27. R.W. Robinett, Am. J. Phys. 65, 1167 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. R.W. Robinett, Eur. J. Phys. 24, 231 (2003)

    Article  Google Scholar 

  29. M.C.M. Wright, C.J. Ham, J. Acoust. Soc. Am. 121, 1865 (2007)

    Article  ADS  Google Scholar 

  30. R.W. Robinett, J. Math. Phys. 39, 278 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Lu, Prog. Nat. Sci. 18, 927 (2008)

    Article  Google Scholar 

  32. A. Matzkin, Found. Phys. 39, 903 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Fonte, B. Zerbo, Eur. Phys. J. Plus 127, 8 (2012)

    Article  Google Scholar 

  34. R.W. Robinett, Am. J. Phys. 67, 67 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Macek, P. Cejnar, J. Jolie, S. Heinze, Phys. Rev. C 73, 014307 (2006)

    Article  ADS  Google Scholar 

  36. W.-K. Lee, Am. J. Phys. 50, 666 (1982)

    Article  ADS  Google Scholar 

  37. R.W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples (Oxford University Press, Oxford, 1997)

  38. H. Masur, S. Tabachnikov, In Handbook of Dynamical Systems, Vol. 1A (North-Holland, 2002)

  39. S.L. Glashow, L. Mittag, J. Stat. Phys. 87, 937 (1997)

    Article  ADS  Google Scholar 

  40. P.J. Richens, M.V. Berry, Physica D 2, 495 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Gutkin, Physica D 19, 311 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Zyczkowski, Acta Phys. Pol. B 23, 245 (1992)

    MathSciNet  Google Scholar 

  43. S. Jain, H.D. Parab, J. Phys. A 25, 6669 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  44. A Shudo, Phys. Rev. A 46, 809 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Balian, C. Bloch, Ann. Phys. 69, 76 (1972)

    Article  ADS  Google Scholar 

  46. M.V. Berry, Chaotic Behavior of Deterministic Systems, in Proceedings of the Les Houches Summer School, Session XXXVI, edited by G. Iooss. R.H.G. Helleman, R. Stora (North-Holland, Amsterdam, 1983) pp. 171--272

  47. Y.H. Hsieh, Y.T. Yu, P.H. Tuan, J.C. Tung, K.F. Huang, Y.F. Chen, Phys. Rev. E 95, 022214 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I, (Mc-Graw-Hill, 1953) Chapt. 6, p. 754

  49. J. Mathews, R.L. Walker, Mathematical Methods of Physics, 2nd edition (Pearson Addison-Wesley, 1971)

  50. B.J. McCartin, SIAM Rev. 45, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  51. B.J. McCartin, Mysteries of the Equilateral Triangle (Hikari Ltd., 2011)

  52. A.M. Baxter, R. Umble, Am. Math. Mon. 115, 479 (2008)

    Article  Google Scholar 

  53. M.A. Pinsky, SIAM J. Math. Anal. 11, 819 (1980)

    Article  MathSciNet  Google Scholar 

  54. H.R. Krishnamurthy, H.S. Mani, H.C. Verma, J. Phys. A 15, 2131 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  55. D.M.Y. Sommerville, Proc. R. Soc. Edinb. 43, 85 (1923)

    Article  Google Scholar 

  56. D.M.Y. Sommerville, Proc. Edinb. Math. Soc. 41, 49 (1923)

    Article  Google Scholar 

  57. H.L. Davies, Packings of spherical triangles and tetrahedra, in Proc. Colloquium on Convexity (Copenhagen, 1965) pp. 42--51

  58. L. Baumgartner, Math.-Phys. Semesterber. 15, 76 (1968)

    MathSciNet  Google Scholar 

  59. L. Baumgartner, Math. Nachr. 48, 213 (1971)

    Article  MathSciNet  Google Scholar 

  60. M. Goldberg, Comb. Theor. Sect. A 13, 4374 (1972)

    Google Scholar 

  61. M. Goldberg, J. Comb. Theor. (A) 16, 348 (1974)

    Article  Google Scholar 

  62. J.W. Turner, J. Phys. A 17, 2791 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Gardner, Bouncing Balls in Polygons and Polyhedrons, in 6th book of Mathematical Diversions from Scientific American (University of Chicago Press, 1984) pp. 29--38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Panda.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S., Maulik, S., Chakraborty, S. et al. From classical periodic orbits in integrable \( \pi\)-rational billiards to quantum energy spectrum. Eur. Phys. J. Plus 134, 308 (2019). https://doi.org/10.1140/epjp/i2019-12834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12834-4

Navigation