Advertisement

Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method

  • K. Manimegalai
  • Sagar Zephania C F
  • P. K. Bera
  • P. Bera
  • S. K. Das
  • Tapas SilEmail author
Regular Article
  • 28 Downloads

Abstract.

A generalized equation is constructed for a class of classical oscillators with strong anharmonicity which are not exactly solvable. The Aboodh transform-based homotopy perturbation method (ATHPM) is applied to get the approximate analytical solution for the generalized equation and hence some physically relevant anharmonic oscillators are studied as the special cases of this solution. ATHPM provides the approximate analytical solution of the generalized equation in a simple way. The solution from this simple method not only shows excellent agreement with the numerical results but is also found to be of better accuracy in comparison to the solutions obtained from other established approximation methods whenever compared for physically relevant special cases.

References

  1. 1.
    R.A. Bonham, L.S. Su, J. Chem. Phys. 45, 2827 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    Carl M. Bender, Tai Tsun Wu, Phys. Rev. Lett. 21, 406 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    A. Nayfeh, Perturbation Methods (Willey-Interscience, New York, 1973)Google Scholar
  4. 4.
    A.H. Nayfeh, D. Mook, Nonlinear Oscillations (John Willey and Sons, New York, 1979)Google Scholar
  5. 5.
    N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations (CRC Press, 1961)Google Scholar
  6. 6.
    V. Agrwal, H. Denman, J. Sound Vib. 99, 463 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    S. Chen, Y. Cheung, S. Lau, Int. J. Nonlinear Mech. 26, 125 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Cheung, S. Chen, S. Lau, Int. J. Nonlinear Mech. 26, 367 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    G. Adomian, J. Math. Anal. Appl. 135, 501 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Liu, in Conference of 7th Modern Mathematics and Mechanics, Shanghai (Scirp, 1997) pp. 47--53Google Scholar
  11. 11.
    S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD Thesis, Shanghai Jiao Tong University Shanghai (1992)Google Scholar
  12. 12.
    Y.P. Liu, S.J. Liao, Z.B. Li, J. Symb. Comput. 55, 72 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Anjum, J.-H. He, Appl. Math. Lett. 92, 134 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Herisanu, V. Marinca, G. Madescu, F. Dragan, Energies 12, 915 (2019)CrossRefGoogle Scholar
  15. 15.
    J.-H. He, Mech. Res. Commun. 29, 107 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Ganji, D.D. Ganji, Z. Ganji, S. Karimpour, Acta Appl. Math. 106, 79 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.-H. He, Phys. Rev. Lett. 90, 174301 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    I. Mehdipour, D.D. Ganji, M. Mozaffari, Curr. Appl. Phys. 10, 104 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.-H. He, Int. J. Nonlinear Mech. Num. Simul. 9, 211 (2008)Google Scholar
  20. 20.
    J. Langari, M. Akbarzade, Adv. Stud. Theor. Phys. 5, 343 (2011)Google Scholar
  21. 21.
    A. El-Naggar, G. Ismail, Appl. Math. Sci. 6, 2071 (2012)MathSciNetGoogle Scholar
  22. 22.
    T.A. Nofal, G.M. Ismail, A.A.M. Mady, S. Abdel-Khalek, J. Electromagn. Anal. Appl. 5, 388 (2013)ADSGoogle Scholar
  23. 23.
    J.-H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    J.-H. He, Int. J. Nonlinear Mech. 35, 37 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    A. Yildirim, J. Math. Phys. 50, 023510 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Z. Ayati, J. Biazar, J. Egypt. Math. Soc. 23, 424 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Biazar, M. Eslami, Comput. Math. Appl. 62, 225 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Bera, T. Sil, Appl. Math. Comput. 219, 3272 (2012)MathSciNetGoogle Scholar
  29. 29.
    K.S. Aboodh, Global J. Pure Appl. Math. 9, 35 (2013)Google Scholar
  30. 30.
    A. Ghorbani, Chaos, Solitons Fractals 39, 1486 (2009)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J.-H. He, Eur. J. Phys. 29, L19 (2008)CrossRefGoogle Scholar
  32. 32.
    A.G. Davodi, D.D. Ganji, R. Azami, H. Babazadeh, Mod. Phys. Lett. B 23, 3427 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    H.-L. Zhang, Comput. Math. Appl. 58, 2480 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Marinca, N. Herisanu, J. Sound Vib. 329, 1450 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    D.D. Ganji, M. Azimi, M. Mostofi, Indian. J. Pure Appl. Phys. 50, 670 (2012)Google Scholar
  36. 36.
    D.P. Billington, The Tower and the Bridge: The New Art of Structural Engineering (Princeton University Press, 1985)Google Scholar
  37. 37.
    M. Akbarzade, Y. Khan, Math. Comput. Model. 55, 480 (2012)CrossRefGoogle Scholar
  38. 38.
    S.H. Hoseini, T. Pirbodaghi, M.T. Ahmadian, G.H. Farrahi, Mech. Res. Commun. 36, 892 (2009)CrossRefGoogle Scholar
  39. 39.
    Daniel J. Gorman, Free Vibration Analysis of Beams and Shafts (John Wiley & Sons, 1975)Google Scholar
  40. 40.
    M.Nv. Hamdan, N.H. Shabaneh, J. Sound Vib. 199, 711 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    S.-S. Chen et al., Nonlinear Anal. Real World Appl. 10, 881 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    P.M. Mathews, M. Lakshmanan, Q. Appl. Math. 32, 215 (1974)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Manimegalai
    • 1
  • Sagar Zephania C F
    • 1
  • P. K. Bera
    • 2
  • P. Bera
    • 3
  • S. K. Das
    • 4
  • Tapas Sil
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Information Technology Design and Manufacturing KancheepuramChennaiIndia
  2. 2.Department of Physics, Dumkal CollegeBasantapur, DumkalMurshidabadIndia
  3. 3.School of Electronics EngineeringVIT UniversityVelloreIndia
  4. 4.Department of Mechanical EngineeringIIT RoparRupnagarIndia

Personalised recommendations