Neutron-induced damage simulations: Beyond defect production cross-section, displacement per atom and iron-based metrics

Abstract.

Nuclear interactions can be the source of atomic displacement and post-short-term cascade annealing defects in irradiated structural materials. Such quantities are derived from, or can be correlated to, nuclear kinematic simulations of primary atomic energy distributions spectra and the quantification of the numbers of secondary defects produced per primary as a function of the available recoils, residual and emitted, energies. Recoils kinematics of neutral, residual, charged and multi-particle emissions are now more rigorously treated based on modern, complete and enhanced nuclear data parsed in state of the art processing tools. Defect production metrics are the starting point in this complex problem of correlating and simulating the behaviour of materials under irradiation, as direct measurements are extremely improbable. The multi-scale dimensions (nuclear-atomic-molecular-material) of the simulation process is tackled from the Fermi gradation to provide the atomic- and meso-scale dimensions with better metrics relying upon a deeper understanding and modelling capabilities of the nuclear level. Detailed, segregated primary knock-on-atom metrics are now available as the starting point of further simulation processes of isolated and clustered defects in material lattices. This allows more materials, incident energy ranges and particles, and irradiations conditions to be explored, with sufficient data to adequately cover both standard applications and novel ones, such as advanced-fission, accelerators, nuclear medicine, space and fusion. This paper reviews the theory, describes the latest methodologies and metrics, and provides recommendations for standard and novel approaches.

This is a preview of subscription content, log in to check access.

References

  1. 1

    M.J. Norgett, M.T. Robinson, I.M. Torrens, Nucl. Eng. Des. 33, 50 (1975)

    Article  Google Scholar 

  2. 2

    G.R. Odette, D.R. Doiron, Nucl. Tech. 29, 346 (1976)

    Article  Google Scholar 

  3. 3

    D. Simeone, J.M. Costantini, L. Luneville, L. Desgranges, P. Trocellier, P. Garcia, J. Mater. Res. 30, 1495 (2015)

    Article  ADS  Google Scholar 

  4. 4

    G.J. Dienes, G.H. Veneyard, Radiation Effects in Solids (Interscience, New York, 1957)

  5. 5

    N. Bohr, J. Lindhard, Mat. Fys. Medd. Dan. Vid. Setsk. 18, 1495 (1948)

    Google Scholar 

  6. 6

    J. Lindhard, M. Scharff, H.E. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk 33, l (1963)

    Google Scholar 

  7. 7

    D. Simeone, L. Luneville, Y. Serruys, Phys. Rev. E 82, 011122 (2010)

    Article  ADS  Google Scholar 

  8. 8

    D. Simeone, L. Luneville, J.P. Both, EPL 83, 56002 (2008)

    Article  ADS  Google Scholar 

  9. 9

    L. Luneville, D. Simeone, W. Weber, J. Nucl. Mater. 415, 55 (2011)

    Article  ADS  Google Scholar 

  10. 10

    L. Luneville, K. Mallick, V. Pontikis, D. Simeone, Phys. Rev. E 94, 0521262 (2016)

    Article  Google Scholar 

  11. 11

    L. Luneville, D. Simeone, C. Jouanne, J. Nucl. Mater. 353, 89 (2006)

    Article  ADS  Google Scholar 

  12. 12

    P. Sigmund, Radiation Damage Processes in Materials (Dupuy, Leiden, 1975)

  13. 13

    J. Lindhard, V. Nielsen, M. Scharff, Mat. Fys. Medd. Dan. Vid. Setsk. 36, 89 (1968)

    Google Scholar 

  14. 14

    G.H. Kinchin, R.S. Pease, Rep. Prog. Phys. 18, 1 (1955)

    Article  ADS  Google Scholar 

  15. 15

    Don M. Parkin, C. Alton Coulter, J. Nucl. Mater. 101, 261 (1981)

    Article  ADS  Google Scholar 

  16. 16

    D. Simeone, O. Hablot, V. Micalet, P. Bellon, Y. Serruys, J. Nucl. Mater. 246, 206 (1997)

    Article  ADS  Google Scholar 

  17. 17

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010) http://srim.org/

    Article  ADS  Google Scholar 

  18. 18

    M.T. Robinson, J. Nucl. Mater. 216, 1 (1994)

    Article  ADS  Google Scholar 

  19. 19

    G. Demange, E. Antoshchenkova, M. Hayoun, L. Luneville, D. Simeone, J. Nucl. Mater. 486, 26 (2017)

    Article  ADS  Google Scholar 

  20. 20

    M.T. Robinson, The Energy Dependence of Neutron Damage in Solid, in ICE Virtual Library - Nuclear fusion reactors (1970) pp. 364--378

  21. 21

    D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, S.J. Wooding, Nucl. Instrum. Methods Phys. Res. B 102, 37 (1995)

    Article  ADS  Google Scholar 

  22. 22

    F. Gao, D.J. Bacon, L.M. Howe, C.B. So, J. Nucl. Mater. 294, 288 (2001)

    Article  ADS  Google Scholar 

  23. 23

    C.P. Flynn, R.S. Averback, Phys. Rev. B, Rapid Commun. 38, 7118 (1988)

    Article  ADS  Google Scholar 

  24. 24

    A. Akkerman, J. Barak, IEEE Trans. Nucl. Sci. 53, 3667 (2006)

    Article  ADS  Google Scholar 

  25. 25

    M. Griffiths, AECL Nucl. Rev. 2, 1 (2013)

    Article  Google Scholar 

  26. 26

    L. Greenwood, J. Nucl. Mater. 115, 137 (1983)

    Article  ADS  Google Scholar 

  27. 27

    L. Luneville, J.-Ch. Sublet, D. Simeone, J. Nucl. Mater. 505, 262 (2018)

    Article  ADS  Google Scholar 

  28. 28

    T. Khromyleva, I. Bondarenko, A. Gurbich, V. Ketlerov, V. Khryachkov, P. Prusachenko, Nucl. Sci. Eng. 191, 282 (2018)

    Article  Google Scholar 

  29. 29

    L.R. Greenwood, B.M. Oliver, J. ASTM Int. 3, 1 (2006)

    Google Scholar 

  30. 30

    L.R. Greenwood, R.K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations (1985) ANL/FPP/TM-197

  31. 31

    F.A. Garner et al., J. Nucl. Mater. 122, 356 (2006)

    Google Scholar 

  32. 32

    L.R. Greenwood, F.A. Garner, B.M. Oliver, M.L. Grossbeck, W.G. Wolfer, J. ASTM Int. 1, 1 (2004)

    Article  Google Scholar 

  33. 33

    H. Liu, M.A. Abdou, L.R. Greenwood, Fus. Eng. Des. 88, 2860 (2013)

    Article  Google Scholar 

  34. 34

    L.R. Greenwood, D.G. Graczyk, D.W. Kneff, J. Nucl. Mater. 1335, 155 (1988)

    Google Scholar 

  35. 35

    L.R. Greenwood, J. Nucl. Mater. 141--143, 654 (1986)

    Article  ADS  Google Scholar 

  36. 36

    F.A. Garner, Compreh. Nucl. Mater. 4, 33 (2012)

    Article  Google Scholar 

  37. 37

    A.J. Koning, Eur. Phys. J. A 51, 184 (2015)

    Article  ADS  Google Scholar 

  38. 38

    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  39. 39

    A.J. Koning, TALYS-1.9, User Manual (Nuclear Research and Consultancy Group NRG, 2017) http://www.talys.eu/download-talys/

  40. 40

    A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019) Special Issue on Nuclear Reaction Data

    Article  ADS  Google Scholar 

  41. 41

    P. Helgesson, H. Sjöstrand, D. Rochman, Nucl. Data Sheets 145, 1 (2017)

    Article  ADS  Google Scholar 

  42. 42

    R.E. Stoller, G.R. Odette, J. Nucl. Mater. 186, 203 (1992)

    Article  ADS  Google Scholar 

  43. 43

    R.E. MacFarlane, A.C. Kahler, Nucl. Data Sheets 111, 2739 (2010)

    Article  ADS  Google Scholar 

  44. 44

    R.E. MacFarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler, J.L. Conlin, W. Haeck, The NJOY nuclear data processing system, version 2016 (Los Alamos National Laboratory LA-UR-17-20093, 2016) https://github.com/njoy/NJOY2016-manual

  45. 45

    NJOY2016 Nuclear Data Processing System (2016) https://njoy.github.io/NJOY2016/

  46. 46

    J.-Ch. Sublet, J.W. Eastwood, J.G. Morgan, M.R. Gilbert, M. Fleming, W. Arter, Nucl. Data Sheets 139, 77 (2017) https://fispact.ukaea.uk/

    Article  ADS  Google Scholar 

  47. 47

    L.R. Greenwood, R.K. Smither, Displacement Damage Calculations with ENDF/B-V, in Proceedings of the Advisory Group Meeting on Nuclear Data for Radiation Damage Assessment and Reactor Safety Aspects, Vienna, Austria (IAEA, 1981)

  48. 48

    J.-Ch. Sublet, IAEA Primary Radiation Damage Cross-Sections CRP files (2018) https://www-nds.iaea.org/CRPdpa/

  49. 49

    M.R. Gilbert, J. Marian, J.-Ch. Sublet, J. Nucl. Mater. 467, 121 (2015)

    Article  ADS  Google Scholar 

  50. 50

    M.R. Gilbert, J.-Ch. Sublet, Nucl. Mater. Energy 9, 576 (2016)

    Article  Google Scholar 

  51. 51

    M.R. Gilbert, SPECTRA-PKA (2018) code available to download from github at https://github.com/fispact/SPECTRA-PKA

  52. 52

    M.R. Gilbert, J.-Ch. Sublet, J. Nucl. Mater. 504, 01 (2018)

    Article  Google Scholar 

  53. 53

    A.J. Koning, D. Rochman, TENDL-2017 (2018) available from https://tendl.web.psi.ch/tendl_2017/tendl2017.html

  54. 54

    D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018) Special Issue on Nuclear Reaction Data

    Article  ADS  Google Scholar 

  55. 55

    A. Trkov, M. Herman, D.A. Brown (Editors), ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI. ENDF/B-VII and ENDF/B-VIII, CSEWG Document ENDF-102 BNL-203218 (2018)

  56. 56

    T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Pi-En Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, J. Nucl. Sci. Technol. 55, 684 (2018)

    Article  Google Scholar 

  57. 57

    Y. Iwamoto, T. Sato, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, R. Hosoyamada, K. Niita, J. Nucl. Sci. Technol. 54, 617 (2017)

    Article  Google Scholar 

  58. 58

    K. Niita, Y. Iwamoto, T. Sato, H. Iwase, N. Matsuda, Y. Sakamoto, H. Nakashima, A new treatment of radiation behaviour beyond one-body observables, in Proceedings of International Conference on Nuclear Data for Science and Technology 2007, Nice, France, April 22–27, 2007 (EDP Sciences, 2007)

  59. 59

    T. Ogawa, T. Sato, S. Hashimoto, K. Niita, Nucl. Instrum. Methods A 763, 575 (2014)

    Article  ADS  Google Scholar 

  60. 60

    Y. Iwamoto, K. Niita, T. Sawai, R.M. Ronningen, T. Baumann, Nucl. Instrum. Methods B 274, 57 (2012)

    Article  ADS  Google Scholar 

  61. 61

    S. Furihata, Nucl. Instrum. Methods B 171, 251 (2000)

    Article  ADS  Google Scholar 

  62. 62

    T. Ogawa, S. Hashimoto, T. Sato, K. Niita, Nucl. Instrum. Methods B 325, 35 (2014)

    Article  ADS  Google Scholar 

  63. 63

    K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, K. Furutaka, T. Oshawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  64. 64

    M.B. Chadwick, P. Obložinský, M.W. Herman et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  65. 65

    Y. Iwamoto, T. Ogawa, Nucl. Instrum. Methods B 396, 26 (2017)

    Article  ADS  Google Scholar 

  66. 66

    Y. Iwamoto, H. Iwamoto, M. Harada, K. Niita, J. Nucl. Sci. Technol. 51, 98 (2014)

    Article  Google Scholar 

  67. 67

    P. Griffin, D. Rochman, A. Koning, EPJ Web of Conferences 146, 02008 (2017)

    Article  Google Scholar 

  68. 68

    R.E. Stoller, Primary Radiation Damage Cross-Sections, Summary Report of the Second Research Coordination Meeting, Technical Report INDC(NDS)-0691 (IAEA, 2015) https://www-nds.iaea.org/publications/indc/indc-nds-0691/

  69. 69

    N. Otsuka et al., Nucl. Data Sheets 120, 272 (2014)

    Article  ADS  Google Scholar 

  70. 70

    A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)

    Article  Google Scholar 

  71. 71

    E. Bauge, P. Dossantos-Uzarralde, J. Korean Physical Society 59, 1218 (2011)

    Article  ADS  Google Scholar 

  72. 72

    E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014)

    Article  ADS  Google Scholar 

  73. 73

    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, EPJ Nucl. Sci. Technol. 3, 14 (2017)

    Article  Google Scholar 

  74. 74

    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, G. Perret, EPJ Nucl. Sci. Technol. 4, 7 (2018)

    Article  ADS  Google Scholar 

  75. 75

    D.C. Larson, D.M. Hetrick, N.M. Larson, C.Y. Fu, S.J. Epperson, Evaluation of ${}^{28,29,30}$Si for ENDF/B-VI, Technical Report ORNL-TM-11825 (ORNL, 1991)

  76. 76

    W.E. Kinney, J.W. McConnell, High resolution neutron scattering experiments at ORELA, in Proceedings of International Conference of Neutron Interaction with Nuclei Lowell, MA, USA, Vol. 2 (1976) p. 1319

  77. 77

    F.G. Perey, T.A. Love, W.E. Kinney, A test of neutron total cross-section evaluations from 0.2 to 20MeV for C, O, Al, Si, Ca, Fe, and Si02, Technical Report ORNL-4823 (ORNL, 1972)

  78. 78

    S.P. Simakov, A.J. Koning, A.Yu. Konobeyev, EPJ Web of Conferences 146, 02012 (2017)

    Article  Google Scholar 

  79. 79

    S.P. Simakov, U. Fischer, A.J. Koning, A.Yu. Konobeyev, D.A. Rochman, Nucl. Mater. Energy 15, 244 (2018)

    Article  Google Scholar 

  80. 80

    R.E. Stoller, L.R. Greenwood, J. Nucl. Mater. 271-272, 57 (1999)

    Article  ADS  Google Scholar 

  81. 81

    S.P. Simakov, A.Yu. Konobeyev, U. Fischer, V. Heinzel, J. Nucl. Mater. 386, 52 (2009)

    Article  ADS  Google Scholar 

  82. 82

    A.Yu. Konobeyev, U. Fischer, Yu.A. Korovin, S.P. Simakov, IOTA-2017: a code for the simulation of ion transport in materials (2017) KIT Scientific Working Papers 63 https://publikationen.bibliothek.kit.edu/1000077011

  83. 83

    K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary Radiation Damage in Materials, Report NEA/NSC/DOC(2015)9 (2015)

  84. 84

    Kai Nordlund, Steven J. Zinkle, Andrea Sand, Fredric Granberg, Robert S. Averback, R.E. Stoller, Tomoaki Suzudo, Lorenzo Malerba, Florian Banhart, William Weber, Francois Willaime, Sergei Dudarev, D. Simeone, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  85. 85

    C.J. Ortiz, J. Comb. Mat. Sci. 154, 325 (2018)

    Article  Google Scholar 

  86. 86

    R.E. Stoller, Compreh. Nucl. Mater. 1, 293 (2012)

    Article  Google Scholar 

  87. 87

    K. Nordlund, J. Wallenius, L. Malerbar, Nucl. Instrum. Methods B 246, 32 (2005)

    Google Scholar 

  88. 88

    C.S. Becquart P. Olsson, C. Domain, Mat. Res. Lett. 4, 219 (2016)

    Article  Google Scholar 

  89. 89

    Subcommittee E10.05 on Nuclear Radiation Metrology, ASTM standard E693-17: Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA) (ASTM International, 2012)

  90. 90

    J.A. Horak, T.M. Blewitt, J. Nucl. Mater. 49, 161 (1973)

    Article  ADS  Google Scholar 

  91. 91

    S. Takamura, T. Arubat, J. Nucl. Mater. 136, 159 (1985)

    Article  ADS  Google Scholar 

  92. 92

    G. Wallner, M.S. Anand, L.R. Greenwood et al., J. Nucl. Mater. 152, 146 (1988)

    Article  ADS  Google Scholar 

  93. 93

    A. Trkov, R. Capote, Phys. Proc. 64, 48 (2015)

    Article  ADS  Google Scholar 

  94. 94

    A.F. Calder, D.J. Bacon, A.V. Barashev, Yu.N. Osetsky, Philos. Mag. 90, 863 (2010)

    Article  ADS  Google Scholar 

  95. 95

    M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002)

    Article  ADS  Google Scholar 

  96. 96

    Mai Ghaly, R.S. Averback, Phys. Rev. Lett. 72, 364 (1994)

    Article  ADS  Google Scholar 

  97. 97

    Mai Ghaly, Kai Nordlund, R.S. Averback, Philos. Mag. A 79, 795 (1999)

    Article  Google Scholar 

  98. 98

    N.P. Lazarev, V.I. Dubinko, Radiat. Effects Defects Solids 158, 803 (2003)

    Article  ADS  Google Scholar 

  99. 99

    N.P. Lazarev, A.S. Bakai, J. Supercrit. Fluids 82, 22 (2013)

    Article  Google Scholar 

  100. 100

    M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, K. Farrell, J. Nucl. Mater. 307-311, 912 (2002)

    Article  ADS  Google Scholar 

  101. 101

    G.R. Odette, G.E. Lucas, JOM 53, 18 (2001)

    Article  Google Scholar 

  102. 102

    E. Meslin, M. Lambrecht, M. Hernández-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gómez-Briceño, A. Ulbricht, A. Almazouzi, J. Nucl. Mater. 406, 73 (2010)

    Article  ADS  Google Scholar 

  103. 103

    A. Kuramoto, T. Toyama, Y. Nagai, K. Inoue, Y. Nozawa, M. Hasegawa, M. Valo, Acta Mater. 61, 5236 (2013)

    Article  Google Scholar 

  104. 104

    Wei-Ying Chen, Yinbin Miao, Yaqiao Wu, Carolyn A. Tomchik, Kun Mo, Jian Gan, Maria A. Okuniewski, Stuart A. Maloy, James F. Stubbins, J. Nucl. Mater. 462, 242 (2015)

    Article  ADS  Google Scholar 

  105. 105

    Takaaki Koyanagi, N.A.P. Kiran Kumar, Taehyun Hwang, Lauren M. Garrison, Xunxiang Hu, Lance L. Snead, Yutai Katoh, J. Nucl. Mater. 490, 66 (2017)

    Article  ADS  Google Scholar 

  106. 106

    M. Fukuda, T. Tanno, S. Nogami, A. Hasegawa, Mater. Trans. 53, 2145 (2012)

    Article  Google Scholar 

  107. 107

    S.J. Zinkle, B.N. Singh, J. Nucl. Mater. 351, 269 (2006)

    Article  ADS  Google Scholar 

  108. 108

    F.A. Garner, M.B. Toloczko, B.H. Sencer, J. Nucl. Mater. 276, 123 (2000)

    Article  ADS  Google Scholar 

  109. 109

    M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Melʼnychenko, A.S. Kalchenko, J. Nucl. Mater. 453, 323 (2014)

    Article  ADS  Google Scholar 

  110. 110

    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004)

    ADS  Google Scholar 

  111. 111

    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)

    Article  ADS  Google Scholar 

  112. 112

    M.I. Mendelev, G.J. Ackland, Philos. Mag. Lett. 87, 349 (2007)

    Article  ADS  Google Scholar 

  113. 113

    P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba, Phys. Rev. B 72, 214119 (2005)

    Article  ADS  Google Scholar 

  114. 114

    G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba, Philos. Mag. 91, 1724 (2011)

    Article  ADS  Google Scholar 

  115. 115

    G. Bonny, R.C. Pasianot, L. Malerba, Model. Simul. Mater. Sci. Eng. 17, 025010 (2009)

    Article  ADS  Google Scholar 

  116. 116

    G. Bonny, R.C. Pasianot, N. Castin, L. Malerba, Philos. Mag. 89, 3531 (2009)

    Article  ADS  Google Scholar 

  117. 117

    G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, L. Malerba, J. Nucl. Mater. 442, 282 (2013)

    Article  ADS  Google Scholar 

  118. 118

    G. Bonny, A. Bakaev, D. Terentyev, Yu.A. Mastrikov, J. Appl. Phys. 121, 165107 (2017)

    Article  ADS  Google Scholar 

  119. 119

    J.F. Ziegler, U. Littmark, J.P. Biersack, The Stopping and Range of Ions in Solids (Pergamon, 1985)

  120. 120

    C. Bjorkas, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 259, 853 (2007)

    Article  ADS  Google Scholar 

  121. 121

    D. Terentyev, A. Zinovev, G. Bonny, J. Nucl. Mater. 475, 132 (2016)

    Article  ADS  Google Scholar 

  122. 122

    A.E. Sand, S.L. Dudarev, K. Nordlund, EPL 103, 46003 (2013)

    Article  ADS  Google Scholar 

  123. 123

    K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)

    Article  Google Scholar 

  124. 124

    R.E. Voskoboinikov, Y.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 377, 385 (2008)

    Article  ADS  Google Scholar 

  125. 125

    F. Gao, D.J. Bacon, A.V. Barashev, H.L. Heinisch, MRS Proc. 540, 703 (1998)

    Article  Google Scholar 

  126. 126

    S.I. Golubov, A.V. Barashev, R.E. Stoller, Compreh. Nucl. Mater. 1, 357 (2012)

    Article  Google Scholar 

  127. 127

    C.H. Woo, B.N. Singh, Philos. Mag. A 65, 889 (1992)

    Article  ADS  Google Scholar 

  128. 128

    B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas, J. Nucl. Mater. 244, 185 (1997)

    Article  ADS  Google Scholar 

  129. 129

    K. Vörtler, C. Björkas, D. Terentyev, L. Malerba, K. Nordlund, J. Nucl. Mater. 382, 24 (2008)

    Article  ADS  Google Scholar 

  130. 130

    M. Tikhonchev, V. Svetukhin, E. Gaganidze, J. Nucl. Mater. 442, S618 (2013)

    Article  ADS  Google Scholar 

  131. 131

    T. Toyama, A. Kuramoto, Y. Nagai, K. Inoue, Y. Nozawa, Y. Shimizu, Y. Matsukawa, M. Hasegawa, M. Valo, J. Nucl. Mater. 449, 207 (2014)

    Article  ADS  Google Scholar 

  132. 132

    G. Bonny, D. Terentyev, E.E. Zhurkin, L. Malerba, J. Nucl. Mater. 452, 486 (2014)

    Article  ADS  Google Scholar 

  133. 133

    D. Terentyev, X. He, G. Bonny, A. Bakaev, E. Zhurkin, L. Malerba, J. Nucl. Mater. 457, 173 (2015)

    Article  ADS  Google Scholar 

  134. 134

    P. Jung, J. Nucl. Mater. 117, 70 (1983)

    Article  ADS  Google Scholar 

  135. 135

    P. Jung, Production of atomic defects in metals, in Landolt-Boernstein, Croup III: Crystal and Solid State Physics (Springer-Verlag, Berlin, 1991)

  136. 136

    C.H.M. Broeders, A.Yu. Konobeyev, J. Nucl. Mater. 328, 197 (2004)

    Article  ADS  Google Scholar 

  137. 137

    A.Yu. Konobeyev, U. Fischer, C.H.M. Broeders, L. Zanini, Improved displacement cross-sections for structural materials irradiated with intermediate and high energy protons, in Proceedings of AccApp’07, Pocatello, Idaho (2007)

  138. 138

    A.Yu. Konobeyev, U. Fischer, L. Zanini, Advanced evaluations of displacement and gas production cross-sections for chromium, iron, and nickel up to 3GeV incident particle energy, in Proceedings of AccApp’11, Knoxville (2011)

  139. 139

    A.Yu. Konobeyev, U. Fischer, S.P. Simakov, Nucl. Instrum. Methods Phys. Res. B 431, 55 (2018)

    Article  ADS  Google Scholar 

  140. 140

    R.E. Stoller, J. Nucl. Mater. 276, 22 (2000)

    Article  ADS  Google Scholar 

  141. 141

    A. Dunlop, D. Lesueur, P. Legrand, H. Dammak, J. Dural, Nucl. Instrum. Methods Phys. Res. B 90, 330 (1994)

    Article  ADS  Google Scholar 

  142. 142

    A.Yu. Konobeyev, U. Fischer, S.P. Simakov, Nucl. Eng. Technol. 51, 170 (2019)

    Article  Google Scholar 

  143. 143

    A.Yu. Konobeyev, U. Fischer, L. Zanini, Neutron displacement cross-sections for materials from Be to U calculated using the arc-dpa concept, in Proceedings of AccApp’17, Quebec (2017)

  144. 144

    A.Yu. Konobeyev, U. Fischer, P.E. Pereslavtsev, S.P. Simakov, S. Akca, DXS files, https://www-nds.iaea.org/public/download-endf/DXS/ (2017)

  145. 145

    Mark T. Robinson, Phys. Rev. B 40, 10717 (1989)

    Article  ADS  Google Scholar 

  146. 146

    F. Mota, C.J. Ortiz, R. Vila, N. Casal, A. García, A. Ibarra, J. Nucl. Mater. 442, S699 (2013)

    Article  ADS  Google Scholar 

  147. 147

    F. Mota, R. Vila, C. Ortiz, A. Garcia, N. Casal, A. Ibarra, D. Rapisarda, V. Queral, Fus. Eng. Des. 86, 2425 (2011) Proceedings of the 26th Symposium of Fusion Technology (SOFT-26)

    Article  Google Scholar 

  148. 148

    P.V. Vladimirov, Yu.D. Lizunov, Radiat. Effects Defects Solids 139, 109 (1996)

    Article  ADS  Google Scholar 

  149. 149

    Pavel Vladimirov, Serge Bouffard, C. R. Phys. 9, 303 (2008)

    Article  Google Scholar 

  150. 150

    MCNP5 Monte Carlo N-particle code developed by Los Alamos National Laboratory (2015) https://laws.lanl.gov/vhosts/mcnp.lanl.gov/mcnp5.shtml

  151. 151

    FENDL 3.1b: Fusion evaluated nuclear data library v 3.1b, released on 1 july 2016 (2016) https://www-nds.iaea.org/fendl/

  152. 152

    LAMMPS Molecular Dynamics Simulator (2015) http://lammps.sandia.gov/

  153. 153

    HECToR: UK National Supercomputing Service (2018) http://www.hector.ac.uk

  154. 154

    MARCONI Eurofusion HPC (2018) http://www.hpc.cineca.it/hardware/marconi

  155. 155

    J. Knaster, the IFMIF/EVEDA Integrated Project Team, Nucl. Fus. 57, 102016 (2017)

    Article  ADS  Google Scholar 

  156. 156

    F. Mota, Á. Ibarra, Á. García, J. Molla, Nucl. Fus. 55, 123024 (2015)

    Article  ADS  Google Scholar 

  157. 157

    A. Ibarra, R. Heidinger, P. Barabaschi, F. Mota, A. Mosnier, P. Cara, F.S. Nitti, Fusion Sci. Technol. 66, 252 (2014)

    Article  Google Scholar 

  158. 158

    F. Arbeiter, A. Abou-Sena, Y. Chen, B. Dolensky, T. Heupel, C. Klein, N. Scheel, G. Schlindwein, Fusion Eng. Des. 86, 607 (2011) Proceedings of the 26th Symposium of Fusion Technology (SOFT-26)

    Article  Google Scholar 

  159. 159

    Iole Palermo, Iván Fernández, David Rapisarda, Angel Ibarra, Fus. Eng. Des. 109-111, 13 (2016) Proceedings of the 12th International Symposium on Fusion Nuclear Technology-12 (ISFNT-12)

    Article  Google Scholar 

  160. 160

    Iván Fernández-Berceruelo, David Rapisarda, Iole Palermo, Luis Maqueda, David Alonso, Tomas Melichar, Otakar Frýbort, Ladislav Vála, Ángel Ibarra, Fus. Eng. Des. 124, 822 (2017) Proceedings of the 29th Symposium on Fusion Technology (SOFT-29) Prague, Czech Republic, September 5–9, 2016

    Article  Google Scholar 

  161. 161

    F. Moro, A. Del Nevo, D. Flammini, E. Martelli, R. Mozzillo, S. Noce, R. Villari, Fus. Eng. Des. 136, 1260 (2018)

    Article  Google Scholar 

  162. 162

    P. Lu, P. Pereslavtsev, F. Hernandez, U. Fischer, Fus. Eng. Des. 125, 18 (2017)

    Article  Google Scholar 

  163. 163

    P. Pereslavtsev, U. Fischer, F. Hernandez, L. Lu, Fus. Eng. Des. 124, 910 (2017) Proceedings of the 29th Symposium on Fusion Technology (SOFT-29) Prague, Czech Republic, September 5–9, 2016

    Article  Google Scholar 

  164. 164

    E. Sikik, BR2 spectrum, private communication (2015) BR2/RCE/ES/2015/10 BR2 Neutron Spectra Position: hote plane

  165. 165

    V.D. Sevastianov, Kharakteristiki polei neitronov, Handbook Mendeleevo, VNIIFTRI (2014) http://www.gsssd-rosatom.mephi.ru/DB-nspectra/fission/550/598.php

  166. 166

    L.R. Greenwood, Neutron source characterization for fusion materials studies, position of the neutron spectrum: near core center (1981) Second Topical Meeting on Fusion Reactor, CONF-810831--101

  167. 167

    I. Remec, F. Kam, Position of the neutron spectra: Channel 5, midplane (1997) NUREG/CR-6453 ORNL/TM-13204

  168. 168

    G.R. Odette, P.J. Maziasz, J.A. Spitznagel, J. Nucl. Mater. 104, 1289 (1981)

    Article  ADS  Google Scholar 

  169. 169

    M.E. Sawan, Fus. Eng. Des. 87, 551 (2012) Tenth International Symposium on Fusion Nuclear Technology (ISFNT-10)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. -Ch. Sublet.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sublet, J.-., Bondarenko, I.P., Bonny, G. et al. Neutron-induced damage simulations: Beyond defect production cross-section, displacement per atom and iron-based metrics. Eur. Phys. J. Plus 134, 350 (2019). https://doi.org/10.1140/epjp/i2019-12758-y

Download citation