Skip to main content
Log in

Computational fluid-dynamics-based simulation of heat transfer through vacuum glass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The heat transfer process of vacuum glass is very complicated. In particular, the heat transfer process of functional vacuum glass, which includes the coupling of heat conduction, convection, and radiation, does not have an exact mathematical solution. The most important parameter representing the thermal properties of vacuum glass, the heat transfer coefficient, is difficult to measure online because it increases over time, thereby decreasing the thermal-insulation performance. Thus, measuring it quickly and accurately for a vacuum glass in use is difficult. This study was conducted to develop an efficient method to simulate heat transfer through vacuum glass. To this end, based on advanced numerical-simulation technology, a computational fluid dynamics software was used to analyse the heat transfer process, and the simulation results applied to guide and analyse the non-steady-state test method. It was found that when a circular heating plate is used to heat the side of the vacuum glass, the ratio of the radius of the heating plate to the thickness of the vacuum glass should exceed three. This approach guarantees that the centre of the heating plate undergoes one-dimensional heat transfer, and the temperature measurement at the centre of the non-heated surface is of practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zoller, Hohle Glasscheibe, German Patent Application No. 387655 (1913)

  2. Belgian Standards, Thermal performances of buildings ---Calculation of thermal transmittances of building components and building elements--- Calculation of transmission and ventilation heat transfer coefficients (NBN B 62 002, Brussels, 2008)

  3. Belgian Standards, Calculation of heat transmission coefficients of glass (NBN B 62 004, Brussels, 1987)

  4. Standardisation Administration of China, Graduation and test method for thermal insulating properties of doors and windows (SAC GB/T 8484, China, 2008)

  5. R.E. Collins, G.M. Turner, A.C. Fischer-Cripps, J.-Z. Tang, T.M. Simko, C.J. Dey, D.A. Clugston, Q.-C. Zhang, J.D. Garrison, Build. Environ. 30, 459 (1995)

    Article  Google Scholar 

  6. R.E. Collins, T.M. Simko, Sol. Energy 62, 189 (1998)

    Article  ADS  Google Scholar 

  7. T.M. Simko, R.E. Collins, Aust. J. Mech. Eng. 12, 305 (2014)

    Article  Google Scholar 

  8. Y. Fang, T.J. Hyde, F. Arya, N. Hewitt, P.C. Eames, B. Norton, S. Miller, Renew. Sustain. Energy Rev. 37, 480 (2014)

    Article  Google Scholar 

  9. F. Zoller, Hollow pane of glass, German Patent No. 387655 (1924)

  10. P.C. Eames, Vacuum 82, 717 (2008)

    Article  ADS  Google Scholar 

  11. S.-B. Song, B.-G. Son, S.-M. Jung, J. Korean Sol. Energy Soc. 11, 139 (2012)

    Google Scholar 

  12. T. Gallauziaux, D. Fedullo, The Big Book of Isolation, 3rd edition (Eyrolles, Paris, 2010) pp. 217--222 (in French)

  13. C.G. Granquist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)

  14. C.M. Lampert, Sol. Energy Mater. Sol. Cells 52, 207 (1998)

    Article  Google Scholar 

  15. J. Kailsson, B. Kailsson, A. Ross, Control strategies and energy savings, in Proceedings of EuroSun 2000, Copenhagen (2000)

  16. Y. Fang, P.C. Eames, Energy Convers. Manag. 47, 3602 (2006)

    Article  Google Scholar 

  17. S.H.N. Lim, J. Isidorsson, L. Sun, B.L. Kwak, A. Anders, Sol. Energy Mater. Sol. Cells 108, 129 (2013)

    Article  Google Scholar 

  18. A. Jonsson, A. Roos, Sol. Energy 84, 1370 (2010)

    Article  ADS  Google Scholar 

  19. J.-Z. Tang, Y. Li, N. Li, Manufacturing method of tempered and heat strengthened vacuum glass, Chinese Patent No. CN201210121830.0 (2016)

  20. E. Bachli, Heat-insulating building and/or light element, US Patent 5005557 (1987)

  21. K. Hassouneh, A. Alshboul, A. Al-Salaymeh, Energy Convers. Manag. 50, 1583 (2010)

    Article  Google Scholar 

  22. C. Tian, H. Yang, T. Chung, Sol. Energy 84, 1232 (2010)

    Article  ADS  Google Scholar 

  23. E. Cuce, S.B. Riffat, Renew. Sustain. Energy Rev. 41, 695 (2015)

    Article  Google Scholar 

  24. W. Wuethrich, Heat transmission reducing closure element, European Patent No. 1529921 (2005)

  25. J. Tang, Beijing Synergy Vacuum Glazing Technology Co., Ltd. Map & Directions, https://www.gmdu.net/map-892484.html (2019)

  26. L. Wang, D. Shi, G.-J. Zhou, Device for measuring heat transfer coefficient of vacuum glass, Zhuhai Caizhu Industrial Co., Ltd., Chinese Patent No. CN106814103A (G01N25/20) (2006)

  27. W. Xu, Build Energy Conserv. 12, 25 (2014)

    Google Scholar 

  28. J. Chen, H. Xu, Window 1, 17 (2014) (in Chinese)

    Google Scholar 

  29. Standardisation Administration of China, Plastic window for buildings, SAC GB/T 28887, China (2012)

  30. X. Liu, Y. Bao, Y. Song, J. Zhengzhou Univ. 30, 13 (2009) (in Chinese)

    Google Scholar 

  31. Standardisation Administration of China, In-situ test method for degradation ratio of vacuum degree of vacuum glazing photo elastic method, SAC GB/T 32062, China (2015)

  32. Y. Wang, L. Wang, G. Li, Vacuum 2, 57 (2015) (in Chinese)

    Google Scholar 

  33. L. Zhang, L. Wang, Y. Wang, J. Guangxi Univ. Nat. Sci. Ed. 42, 2230 (2017) (in Chinese)

    Google Scholar 

  34. C.M. Lampert, Thin Solid Films 236, 6 (1993)

    Article  ADS  Google Scholar 

  35. C.M. Lampert, Sol. Energy Mater. Sol. Cells 52, 207 (1998)

    Article  Google Scholar 

  36. R. Baetens, B.P. Jelle, A. Gustavsen, Sol. Energy Mater. Sol. Cells 94, 87 (2010)

    Article  Google Scholar 

  37. G. Gorgolis, D. Karamanis, Sol. Energy Mater. Sol. Cells 144, 559 (2016)

    Article  Google Scholar 

  38. Y. Fang, T.J. Hyde, F. Arya, N. Hewitt, P.C. Eames, B. Norton, S. Miller, Renew. Sustain. Energy Rev. 37, 480 (2014)

    Article  Google Scholar 

  39. A. Ghosh, B. Norton, A. Duffy, Appl. Energy 177, 196 (2016)

    Article  Google Scholar 

  40. CSTC (Centre Scientifique et Technique de la Construction) Glass and glass products ---the functions of glazing, Technical Information Note No. 214 (Scientific and Technical Center for Construction, Brussels, 1999)

  41. J.D. Jr Anderson, Modern compressible flow: with historical perspective, 3rd edition (McGraw-Hill Education, United States, 2003) chapt. 2, 3, 5

  42. D.A. Anderson, J.C. Tannehill, R.H. Pletcher, Computational fluid mechanics and heat transfer in Numerical methods for inviscid flow equations (McGraw-Hill, 1984) Chapt. 6

  43. Chinese Standard (2014) JC/T 1079-2008 (JCT 1079-2008, JC/T1079-2008, JCT1079-2008), Vacuum glazing (English translation)

  44. E.W. Weisstein (Editor), Heat conduction equation in physics/thermodynamics (2006)

  45. A. Iserles, A first course in the numerical analysis of differential equations (Cambridge University Press, Cambridge, 1996)

  46. Y.L.Z. Zhu, Numerical simulation of flows around rectangular cylinders, Dissertation, Shanghai Jiaotong University (1990)

  47. T.J. Baker, J. Comput. Phys. 42, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. W.F. Ballhaus, A. Jameson, J. Albert, AIAA J. 16, 573 (1978)

    Article  ADS  Google Scholar 

  49. X.L. Zou Zhengping, Astronaut. Sin. 22, 10 (2001)

    Google Scholar 

  50. W.Z. Wang Jian, X. Xiao, Y. He, Fire Sci. Technol. 24, 274 (2005)

    Google Scholar 

  51. S.R. Subramanian, Unsteady heat transfer: Lumped thermal capacity model, Dissertation, Clarkson University (2013)

  52. R.A. Taylor, Int. Commun. Heat Mass. Transfer 39, 1467 (2012)

    Article  Google Scholar 

  53. X. Zhao, J. Wu, Z. Liu An automated adiabatic calorimeter and measurements of heat capacity, in Proceedings of the 16th European Conference on Thermophysical Properties (Imperial College, London, UK, 2002) CD-ROM ECTP 2002

  54. C. Song, Design and research of accelerometer temperature control system based on DSP, Dissertation, Xi’an University of Electronic Science and Technology (2010)

  55. R.P. Tye, L. Kubicar, N. Lockmuller, Int. J. Thermophys. 26, 1917 (2005)

    Article  ADS  Google Scholar 

  56. L. Kubicar, V. Bohac, V. Vretenar, Thermophysical parameters of phenolic foam measured by the pulse transient method: Methodology for low thermal conductivity materials, in 27th International Thermal Conductivity Conference (ITCC) (DEstech Publication, 2005)

  57. M. Yang, Design of intelligent electronic analytical balance based on MSP430F449, Dissertation, Hunan University (2009)

  58. J. Wu, Design and implementation of contact temperature monitoring system for metro low voltage equipment based on single chip microcomputer, Dissertation, Southwest Jiaotong University (2016)

  59. G. Yu, J. Changchun Univ. 10, 10 (2017)

    Google Scholar 

  60. J. Bai, Design and implementation of smart home system based on MSP430, Dissertation, Northwest Normal University (2015)

  61. P. Zhou, Microcomput. Appl. 01, 26 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Lei.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Gastro, O., Wang, Y. et al. Computational fluid-dynamics-based simulation of heat transfer through vacuum glass. Eur. Phys. J. Plus 134, 351 (2019). https://doi.org/10.1140/epjp/i2019-12737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12737-4

Navigation