Skip to main content
Log in

Nonlinear vibration of different types of functionally graded nanotubes using nonlocal strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Authors in this work investigate nonlinear vibration of different types of functionally graded tube in the theoretical framework of nonlocal strain graded theory. They are tubes with inside-out functionally graded distribution, tubes with circumferential functionally graded distribution and tubes with sinusoidal functionally graded distribution. At the beginning, based on the assumptions and appropriate mathematical models proposed via us, the effective material properties of new functionally graded materials are defined in the form of power-law. Then, a high order shear deformation beam model that can satisfy the stress boundary conditions on inner and outer surfaces is used to analyze respective types of FGM tube. With the aid of the Hamilton' principle, the nonlinear governing equations that include a nonlocal parameter and a material length-scale parameter are acquired, and then are solved via the perturbation method to obtain appropriate analytical solutions. Finally, parametric studies are carried out in detail for three types of functionally graded tube, including the thickness of tube, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume index, different beam models, different kinds of functionally graded distribution and the size of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gao, W.S. Xiao, H.P. Zhu, Lat. Am. J. Solids Struct. 16, e146 (2019)

    Google Scholar 

  2. Y. Gao, W.S. Xiao, H.P. Zhu, Struct. Eng. Mech. 69, 205 (2019)

    Google Scholar 

  3. Y. Yuping, L. Yinxiang, L. Sheng, Comp. Mater. Sci. 151, 273 (2018)

    Google Scholar 

  4. S.I. Yengejeh, S.A. Kazemi, Ö. Andreas, Comp. Mater. Sci. 136, 85 (2017)

    Google Scholar 

  5. S.R. Ahmed, A.A. Mamun, Meccanica 53, 1049 (2017)

    Google Scholar 

  6. D.H. Li, Q.R. Guo, D.X. Yang, Comput. Struct. 191, 100 (2017)

    Google Scholar 

  7. Y. Gao, W.S. Xiao, H.P. Zhu, Eur. Phys. J. Plus 134, 23 (2019)

    ADS  Google Scholar 

  8. R.M. Barati, Eur. Phys. J. Plus 132, 378 (2017)

    Google Scholar 

  9. M. Simşek, Compos. Struct. 133, 968 (2015)

    Google Scholar 

  10. D. Hao, C. Wei, Compos. Struct. 141, 253 (2016)

    Google Scholar 

  11. D.K. Nguyen, Q.H. Nguyen, T.T. Tran et al., Acta Mech. 228, 141 (2017)

    MathSciNet  Google Scholar 

  12. A. Pydah, A. Sabale, Compos. Struct. 160, 867 (2016)

    Google Scholar 

  13. M.Z. Nejad, A. Hadi, Int. J. Eng. Sci. 105, 1 (2016)

    Google Scholar 

  14. M.Z. Nejad, A. Hadi, Int. J. Eng. Sci. 106, 1 (2016)

    Google Scholar 

  15. M.Z. Nejad, A. Hadi, A. Rastgoo, Int. J. Eng. Sci. 103, 1 (2016)

    Google Scholar 

  16. L. Li, Y. Hu, Compos. Struct. 172, 242 (2017)

    Google Scholar 

  17. T. Dai, H.L. Dai, Appl. Math. Model 45, 900 (2017)

    MathSciNet  Google Scholar 

  18. T. Dai, H.L. Dai, Appl. Math. Model 40, 7689 (2016)

    MathSciNet  Google Scholar 

  19. H.L. Dai, Y.N. Rao, T. Dai, Compos. Struct. 152, 199 (2017)

    Google Scholar 

  20. Q. Lin, F. Chen, H. Yin, Eng. Struct. 138, 17 (2017)

    Google Scholar 

  21. M. Hosseini, M. Shishesaz, K.N. Tahan et al., Int. J. Eng. Sci. 109, 29 (2016)

    Google Scholar 

  22. P. Bonniaud, A. Fabre, N. Frossard et al., Eur. Respir. J. 51, 170 (2018)

    Google Scholar 

  23. O. Hod, E. Meyer, Q.S. Zheng et al., Nature 563, 485 (2018)

    ADS  Google Scholar 

  24. Y. Zhen, L. Zhou, Mod. Phys. Lett. B. 31, 1750069 (2017)

    ADS  Google Scholar 

  25. R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)

    Google Scholar 

  26. R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964)

    Google Scholar 

  27. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solid. Struct. 39, 2731 (2002)

    Google Scholar 

  28. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    MathSciNet  Google Scholar 

  29. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    ADS  Google Scholar 

  30. C.W. Lim, G Zhang, J.N. Reddy, J. Mech. Phys. Solids 78, 298 (2015)

    ADS  MathSciNet  Google Scholar 

  31. F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)

    Google Scholar 

  32. M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Eur. Phys. J. Plus 132, 393 (2017)

    ADS  Google Scholar 

  33. R. Ansari, S. Sahmani, H. Rouhi, Comp. Mater. Sci. 50, 3050 (2011)

    Google Scholar 

  34. M. Simşek, H.H. Yurtcu, Compos. Struct. 97, 378 (2013)

    Google Scholar 

  35. J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)

    Google Scholar 

  36. R. Barretta, Int. J. Solid. Struct. 49, 3038 (2012)

    Google Scholar 

  37. R. Barretta, F.M. de Sciarra, Adv. Mater. Sci. Eng. 2013, 360935 (2013)

    Google Scholar 

  38. M. Canadija, R. Barretta, F.M. Sciarra, Compos. Struct. 135, 286 (2016)

    Google Scholar 

  39. Romano, R. Luciano, R. Barretta, Continuum Mech. Thermodyn. 30, 641 (2018)

    MathSciNet  Google Scholar 

  40. L.W. Zhang, W.C. Cui, K.M. Liew, Int. J. Mech. Sci. 103, 9 (2015)

    Google Scholar 

  41. E.M. Miandoab, K.A. Yousefi, H.N. Pishkenari, Micro. Tech. 21, 457 (2015)

    Google Scholar 

  42. M. Shojaeian, Y.T. Beni, H. Ataei, Acta Astron. 118, 62 (2016)

    Google Scholar 

  43. S. Thai, H.T. Thai, T.P. Vo, V.I. Patel, Comput. Struct. 190, 219 (2017)

    Google Scholar 

  44. E.C. Aifantis, Mech. Mater. 35, 259 (2003)

    Google Scholar 

  45. M. Malikan, V.B. Nguyen, Phys. E. 5, 095006 (2018)

    Google Scholar 

  46. G.L. She, F.G. Yuan, B. Karami et al., Int. J. Eng. Sci. 135, 58 (2019)

    Google Scholar 

  47. M.H. Ghayesh, Int. J. Eng. Sci. 124, 115 (2018)

    Google Scholar 

  48. M.R. Barati, Acta Mech. 229, 1 (2017)

    Google Scholar 

  49. X.J. Xu, M.L. Zheng, X.C. Wang, Int. J. Eng. Sci. 119, 217 (2017)

    Google Scholar 

  50. N. Shafiei, G.L. She, Int. J. Eng. Sci. 133, 84 (2018)

    Google Scholar 

  51. N.M. Faleh, R.A. Ahmed, R.M. Fenjan, Int. J. Eng. Sci. 133, 1 (2018)

    Google Scholar 

  52. L. Lu, X. Guo, J. Zhao, Int. J. Eng. Sci. 119, 265 (2017)

    Google Scholar 

  53. M.R. Barati, A. Zenkour, Compos. Struct. 168, 885 (2017)

    Google Scholar 

  54. A. Apuzzo, R. Barretta, S.A. Faghidian, R. Luciano et al., Int. J. Eng. Sci. 133, 99 (2018)

    Google Scholar 

  55. B. Karami, M. Janghorban, A. Tounsi, Thin Wall Struct. 129, 251 (2018)

    Google Scholar 

  56. B. Karami, M. Janghorban, A. Tounsi, Steel Compos. Struct. 25, 361 (2017)

    Google Scholar 

  57. R. Barretta, F.M.d. Sciarra, Int. J. Eng. Sci. 130, 187 (2018)

    Google Scholar 

  58. A. Apuzzo, R. Barretta, S.A. Faghidian et al., Compos. Part B 164, 667 (2019)

    Google Scholar 

  59. G.L. She, F.G. Yuan, Y.R. Ren et al., Compos. Struct. 203, 614 (2018)

    Google Scholar 

  60. P. Zhang, Y. Fu, Eur. J. Mech. A Solids 38, 12 (2013)

    ADS  MathSciNet  Google Scholar 

  61. J.N. Reddy, C.D.Chin, J. Therm. Stress 21, 593 (1998)

    Google Scholar 

  62. T.Z. Yang, S. Ji, X.D. Yang, B. Fang, Int. J. Eng. Sci. 76, 47 (2014)

    Google Scholar 

  63. H.C. Cao, A.G. Evans, Mech. Mater. 7, 295 (1989)

    Google Scholar 

  64. G.L. She, F.G. Yuan, Y.R. Ren, Appl. Math. Model 47, 340 (2017)

    MathSciNet  Google Scholar 

  65. Y. Huang, X.F. Li, Int. J. Mech. Sci. 52, 595 (2010)

    Google Scholar 

  66. J. Zhong, Y. Fu, D. Wan, Y. Li, Appl. Math. Model 40, 7601 (2016)

    MathSciNet  Google Scholar 

  67. G.L. She, Y.R. Ren, F.G. Yuan, W.S. Xiao, Int. J. Eng. Sci. 125, 23 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-shen Xiao.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xiao, Ws. & Zhu, H. Nonlinear vibration of different types of functionally graded nanotubes using nonlocal strain gradient theory. Eur. Phys. J. Plus 134, 345 (2019). https://doi.org/10.1140/epjp/i2019-12735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12735-6

Navigation