Material composition evaluation of historical Cu alloy aquamanilia by complementary XRF and LIBS measurements

  • I. Żmuda-Trzebiatowska
  • J. M. del Hoyo-MeléndezEmail author
  • G. Śliwiński
Regular Article
Part of the following topical collections:
  1. Focus Point on Scientific Research in Conservation Science


The material composition of seven historical aquamanilia from museum collections in Kraków and Gdańsk were examined using X-ray fluorescence (XRF) spectrometry and micro-ablation sampling by means of laser-induced breakdown spectroscopy (LIBS) to better understand the materials found in these objects as well as for providing information that can be used towards authentication and dating studies. An additional set of Cu-alloy objects and also a late medieval XV century bronze aquamanile served for reference and comparison. It was found that four of the figures were casted using quaternary and ternary Cu alloys characterized by a Zn content in the range 17.5-23%, admixtures of Sn and Pb below 7%, and presence of impurities like Fe, Ni, Ag, Si, Ba, and Ca. The observed composition similarities were confirmed by statistically processed data. This indicated that the animal figures (lions) are most probably brass replicas of the medieval ones and were produced during the XVIII-XX centuries. In situ measurements were adequate despite inaccuracies associated with signal intensity fluctuations due to surface geometry effects, the presence of patinas, corrosion or contamination, and systematic errors originating from calibration. The proposed complementary approach that uses portable XRF and LIBS instruments ensures consistent data for compositional studies on historical alloys.

Supplementary material

13360_2019_12705_MOESM1_ESM.pdf (336 kb)
Supplementary material


  1. 1.
    E. Pernicka, Archaeometallurgy in Global Perspective, edited by B. Roberts, C. Thornton (Springer, New York, 2014)Google Scholar
  2. 2.
    M.F. Guerra, Radiation in Art and Archaeology, edited by D.C. Creagh, D.A. Bradley (Elsevier, New York, 2000)Google Scholar
  3. 3.
    I. De Ryck, A. Adriaens, F. Adams, Archaeometry 45, 579 (2003)CrossRefGoogle Scholar
  4. 4.
    P. Dillmann, D. Watkinson, E. Angelini, A. Adriaens, Corrosion and Conservation of Cultural Heritage Metallic Artefacts (Woodhead, Cambridge, UK, 2013)Google Scholar
  5. 5.
    M.C. Bernard, S. Joiret, Electrochim. Acta 54, 5199 (2009)CrossRefGoogle Scholar
  6. 6.
    . Selwyn, Metals and Corrosion: A Handbook for the Conservation Professional (Canadian Conservation Institute, Ottawa, CA, 2004)Google Scholar
  7. 7.
    A. Arafat, M. Na’es, V. Kantarelou, N. Haddad, A. Giakoumaki, V. Argyropoulos, D. Anglos, A.-G. Karydas, J. Cult. Herit. 14, 261 (2013)CrossRefGoogle Scholar
  8. 8.
    L. Ciupiński, E. Fortuna-Zaleśna, H. Garbacz, A. Koss, K.J. Kurzydłowski, J. Marczak, J. Mróz, T. Onyszczuk, A. Rycyk, A. Sarzyński, W. Skrzeczanowski, M. Strzelec, A. Zatorska, G.Z. Zukowska, Sensors 10, 4926 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Cesareo, M. Ferretti, G.E. Gigante, G. Guida, P. Moioli, S. Ridolfi, C. Roldán Garcia, X-Ray Spectrom. 36, 167 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A. Nevin, G. Spoto, D. Anglos, Appl. Phys. A 106, 339 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    I. Zmuda-Trzebiatowska, A. Fietkiewicz, G. Śliwiński, Solid State Phenom. 183, 233 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Iwulska, R. Jendrzejewski, M. Sawczak, I. Żmuda-Trzebiatowska, G. Śliwiński, in Proceedings of the Lasers in the Conservation of Artworks VIII, 2010, edited by R. Radvan, J.F. Asmus, M. Castillejo, P. Pouli, A. Nevin (CRC, Boca Raton, 2010)Google Scholar
  13. 13.
    J. Agresti, A. Mencaglia, S. Siano, Anal. Bioanal. Chem. 395, 2255 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Caneve, F. Colao, R. Fantoni, V. Spizzichino, Appl. Phys. A 85, 151 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    A.N. Shugar, J.L. Mass, Handheld XRF for Art and Archaeology (Leuven University, Leuven, BE, 2013)Google Scholar
  16. 16.
    E. Frahm, R.C.P. Doonan, J. Archaeol. Sci. 40, 1425 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, V. Zafiropulos, J. Cult. Herit. 1, 287 (2000)CrossRefGoogle Scholar
  18. 18.
    M. Simileanu, Rom. Rep. Phys. 68, 203 (2016)Google Scholar
  19. 19.
    M. Castillejo, M. Martín, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R.J.H. Clark, J. Cult. Herit. 1, S297 (2000)CrossRefGoogle Scholar
  20. 20.
    K. Ochocińska, M. Sawczak, M. Martin, J. Bredal-Jørgensen, A. Kamińska, G. Śliwiński, Rad. Phys. Chem. 68, 227 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    V. Spizzichino, R. Fantoni, Spectrochim. Acta B 99, 201 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    D. Anglos, V. Detalle, S. Musazzi, U. Perini (Editors), Laser Induced Breakdown Spectroscopy (Springer, Berlin, Heidelberg, 2014)Google Scholar
  23. 23.
    E.H. Lehmann, P. Vontobel, E. Deschler-Erb, M. Soares, Nucl. Instrum. Methods Phys. Res. A 542, 68 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    M.P. Morigi, F. Casali, M. Bettuzi, R. Brancaccio, V. D’Errico, Appl. Phys. A Mater. 100, 653 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    G. Sarah, B. Gratuze, J.N. Barrandon, J. Anal. At. Spectrom. 22, 1163 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Dowsett, A. Adriaens, Nucl. Instrum. Methods Phys. Res. B 226, 38 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, N. Omenneto, I. Gornushkin, B.W. Smith, J.D. Winefordner, Laser-Induced Breakdown Spectroscopy, Fundamental and Applications, edited by A.W. Miziolek, V. Palleschi, I. Schechter (Cambridge University, Cambridge, UK, 2006)Google Scholar
  28. 28.
    P. Barnet, P. Dandridge (Editors), Lions, Dragons, and Other Beasts: Aquamanila of the Middle Ages, Vessels for Church and Fid (Yale University Press, New Haven, CT, 2006)Google Scholar
  29. 29.
    O. Werner, Zusammensetzung neuzeitlicher Nachgüsse und Fälschungen mittelalterlicher Messinge und Bronzen (Archäometrie, Berliner Beitr. 5, 11 1980)Google Scholar
  30. 30.
    O.v. Falke, E. Meyer, Romanische Leuchter und Gefäße Gießgefäße der Gotik (Deutsche Verlag für Kunstwissenschaft, Berlin, 1937)Google Scholar
  31. 31.
    H.P. Lockner, Kunst Antiq. 5, 28 (1981)Google Scholar
  32. 32.
    Metropolitan Museum of Art (2018)
  33. 33.
    M. McAllister, Western Australia, Bull. Australasian Inst. Mar. Archaeol. 36, 36 (2012)Google Scholar
  34. 34.
    G. Pantazopoulos, A. Vazdirvanidis, Mater. Sci. Eng. 55, 012015 (2014)Google Scholar
  35. 35.
    H. Sugawara, H. Ebiko, Corrosion Sci. 7, 513 (1967)CrossRefGoogle Scholar
  36. 36.
    D.A. Scott, Conservation, Paul Getty Ancient & Historic Metals: Conservation and Scientific Research (Conservation Institute, Malibou California, USA, 2002)Google Scholar
  37. 37.
    K.R. Trethewey, I. Pinwill, Surf. Coat. Technol. 30, 289 (1987)CrossRefGoogle Scholar
  38. 38.
    M.M. Megahed, Int. J. Conser. Sci. 5, 161 (2014)Google Scholar
  39. 39.
    F. Schweitzer, Proceedings of Ancient and Historic Metals: Conservation and Scientific Research Symposium organized by the Paul Getty Museum, Los Angeles, 1991, edited by D.A. Scott, J. Podany, B.B. Considine (J. Paul Getty Museum, California, 1994)Google Scholar
  40. 40.
    L. Campanella, O. Colacichi Alessandri, M. Ferretti, S.H. Plattner, Corros. Sci. 51, 2183 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Morcillo, E. Almeida, M. Marrocos, B. Rosales, Corrosion 57, 967 (2001)CrossRefGoogle Scholar
  42. 42.
    J.M. del Hoyo-Melendez, P. Świt, M. Matosz, M. Woźniak, A. Klisińska-Kopacz, L. Bratasz, Nucl. Instrum. Methods Phys. Res. B 349, 6 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    National Institute of Standards and Technology (2018)
  44. 44.
    A.L. Bacon, A Technical Study of the Alloy Compositions of ‘Brass’ Wind Musical Instruments (1651-1867) Utilizing Non-Destructive X-ray Fluorescence, PhD Dissertation University College London (ProQuest, Ann Arbor, US, 2003)Google Scholar
  45. 45.
    P. Craddock, Scientific Investigation of Copies, Fakes and Forgeries (Elsevier, New York, US, 2009)Google Scholar
  46. 46.
    K.H.A. Janssens, F.C.V. Adams, A. Rindby, Microscopic X-ray Fluorescence Analysis (Wiley, New York, US, 2000)Google Scholar
  47. 47.
    B. Constantinescu, R. Bugoi, E. Oberländer-Tarnoveanu, K. Parvan, Rom. Rep. Phys. 57, 1021 (2005)Google Scholar
  48. 48.
    M.T. Doménech-Carbó, F. Di Turo, N. Montoya, A.F. Catalli, A. Doménech-Carbó, C. De Vito, Sci. Rep. 8, 1 (2018)CrossRefGoogle Scholar
  49. 49.
    R. Jenkins, X-Ray Fluorescence Spectrometry, 2nd ed. (John Wiley and Sons, New York, NY, 1999)Google Scholar
  50. 50.
    M. Ferretti, C. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, E. Console, P. Palaia, Spectrochim. Acta B 62, 1512 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    L. Pardini, A. El Hassan, M. Ferretti, A. Foresta, S. Legnaioli, G. Lorenzetti, E. Nebbia, F. Catalli, M.A. Harith, D. Diaz Pace, F. Anabitarte Garcia, M. Scuotto, V. Palleschi, Spectrochim. Acta B 74-75, 156 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    V. Lazic, M. Vadrucci, R. Fantoni, M. Chiari, A. Mazzinghi, A. Gorghinian, Spectrochim. Acta B 149, 1 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G.S. Senesi, A. De Giacomo, Sensors 10, 7434 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhotophysicsThe Szewalski Institute IF-FM, Polish Academy of SciencesGdańskPoland
  2. 2.Laboratory of Analysis and Non-Destructive Investigation of Heritage ObjectsNational Museum in KrakówKrakówPoland

Personalised recommendations