Advertisement

Numerical simulation of Turing patterns in a fractional hyperbolic reaction-diffusion model with Grünwald differences

  • J. E. Macías-DíazEmail author
  • Ahmed S. Hendy
Regular Article

Abstract.

Departing from a two-dimensional hyperbolic system that describes the interaction between some activator and inhibitor substances in chemical reactions, we investigate a general form of that model using a finite-difference approach. The model under investigation is a nonlinear system consisting of two coupled partial differential equations with generalized reaction terms. The presence of two-dimensional diffusive terms consisting of fractional operators of the Riesz type is considered here, using spatial differentiation orders in the set (1, 2] . We impose initial conditions on a closed and bounded rectangle, and a finite-difference methodology based on the use of weighted-shifted Grünwald differences is proposed. Among the most important results of this work, we establish analytically the second-order consistency of our scheme. Moreover, the discrete energy method is employed to prove the stability and the quadratic convergence of the technique. Some numerical simulations obtained through our method show the appearance of Turing patterns and wave instabilities, in agreement with some reports found in the literature on superdiffusive hyperbolic activator-inhibitor systems.

References

  1. 1.
    V.E. Tarasov, J. Phys. A 39, 14895 (2006)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    V.E. Tarasov, Nonlinear Dyn. 86, 1745 (2016)CrossRefGoogle Scholar
  3. 3.
    V.E. Tarasov, J. Phys. A 38, 5929 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.E. Macías-Díaz, Comput. Math. Appl. 75, 3995 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Dufiet, J. Boissonade, Phys. Rev. E 53, 4883 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. De Wit, Adv. Chem. Phys. 109, 435 (2007)Google Scholar
  7. 7.
    B. Rudovics, E. Dulos, P. De Kepper, Phys. Scr. 1996, 43 (1996)CrossRefGoogle Scholar
  8. 8.
    B. Rudovics, E. Barillot, P. Davies, E. Dulos, J. Boissonade, P. De Kepper, J. Phys. Chem. A 103, 1790 (1999)CrossRefGoogle Scholar
  9. 9.
    J.E. Macías-Díaz, A.S. Hendy, R.H. De Staelen, Comput. Phys. Commun. 224, 98 (2018)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Wang, C. Huang, L. Zhao, J. Comput. Appl. Math. 306, 231 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M.D. Ortigueira Int. J. Math. Math. Sci.2006483912006MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.E. Macías-Díaz, J. Comput. Phys. 351, 40 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J.E. Macías-Díaz, Int. J. Comput. Math. 96, 337 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. Tian, H. Zhou, W. Deng, Math. Comput. 84, 1703 (2015)CrossRefGoogle Scholar
  15. 15.
    K.M. Saad, J.F. Gómez-Aguilar, Physica A 509, 703 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    V.F. Morales-Delgado, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 132, 47 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Khan, J.F. Gómez-Aguilar, A. Khan, T.S. Khan, Physica A 521, 737 (2019)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Nec, A.A. Nepomnyashchy, J. Phys. A 40, 14687 (2007)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Chaos, Solitons Fractals 41, 1095 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E.F.D. Goufo, C.B. Tabi, Chaos 29, 023104 (2019)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    E.F.D. Goufo, J.J. Nieto, J. Comput. Appl. Math. 339, 329 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T.A.M. Langlands, B.I. Henry, S.L. Wearne, J. Phys.: Condens. Matter 19, 065115 (2007)ADSGoogle Scholar
  23. 23.
    E.F.D. Goufo, Eur. Phys. J. Plus 133, 80 (2018)CrossRefGoogle Scholar
  24. 24.
    E.D. Goufo, A. Kubeka, Jpn. J. Ind. Appl. Math. 35, 217 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    E.F.D. Goufo, A. Atangana, M. Khumalo, in Fractional Derivatives with Mittag-Leffler Kernel (Springer, Cham, 2019) pp. 117--134Google Scholar
  26. 26.
    E.F.D. Goufo, A. Atangana, in Fractional Derivatives with Mittag-Leffler Kernel (Springer, Cham, 2019) pp. 117--134Google Scholar
  27. 27.
    B. Datsko, Y. Luchko, V. Gafiychuk, Int. J. Bifurc. Chaos 22, 1250087 (2012)CrossRefGoogle Scholar
  28. 28.
    K. Pen-Yu, Sci. Sin. 20, 287 (1977)Google Scholar
  29. 29.
    A. Mvogo, J.E. Macías-Díaz, T.C. Kofané, Phys. Rev. E 97, 032129 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M.T. Saleem, I. Ali, Eur. Phys. J. Plus 133, 399 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemáticas y FísicaUniversidad Autónoma de AguascalientesAguascalientesMexico
  2. 2.Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and MathematicsUral Federal UniversityYekaterinburgRussia
  3. 3.Department of Mathematics, Faculty of ScienceBenha UniversityBenha CityEgypt

Personalised recommendations