Skip to main content
Log in

Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The California bearing ratio (CBR) is an important parameter in defining the bearing capacity of various soil structures, such as earth dams, road fillings and airport pavements. However, determination of the CBR value of compacted soils from tests takes a relatively long time and leads to a demanding experimental working program in the laboratory. This study is aimed to predict the CBR value of compacted soils by using the group method of data handling (GMDH) model with a type of artificial neural networks (ANN). The results were also compared with multiple linear regression (MLR) analysis and different ANN models. The selected variables for the developed models are gravel content (GC), sand content (SC) fine content (FC), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC) and maximum dry density (MDD) of compacted soils. Many trials were carried out with different numbers of layers and different numbers of neurons in the hidden layer in GMDH model and with different training algorithms in ANN models. The results indicate that the GMDH model has better success in the estimation of the CBR value compared to both the MLR and the different types of ANN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chegenizadeh, H.R. Nikraz, CBR Test on Reinforced Clay, in The 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (PCSMGE), the 64th Canadian Geotechnical Conference (CGC), Oct 2, Toronto, Ontario, Canada (Canadian Geotechnical Society, 2011)

  2. J.E. Bowles, Engineering Properties of Soils and Their Measurements (McGraw-Hill Book Company, New York, 1970)

  3. B. Caglarer, Road construction technique, General Directorate of Highways of the Ministry of Public Works and Settlement, Publication no. 259, Ankara, Turkey (1986)

  4. M. Aytekin, Experimental Soil Mechanics (Technical Publisher, Ankara, 2004) pp. 483--559

  5. TS 5744, In Situ Measurement of Soil Properties in Civil Engineering (Turkish Standards Institute, 1988)

  6. M.M. Zumrawi, IACSIT Int. J. Eng. Technol. 6, 439 (2014)

    Article  Google Scholar 

  7. W.R. Day, Soil Testing Manual: Procedures, Classification Data, and Sampling Practices (McGraw-Hi//Edecation, 2001)

  8. TS 1900-2, Soil Laboratory Experiments in Civil Engineering - Part 2: Determination of Mechanical Properties (Turkish Standards Institute, Ankara, 2006)

  9. M. Zumrawi, Prediction of CBR from index properties of cohesive soils, in Advances in Civil Engineering and Building Materials, edited by S.-Y. Chang, S.K. Al Bahar, J. Zhao (CRC Press, Boca Raton, 2012) pp. 561--565

  10. W.P.M. Black, Geotechnique 12, 271 (1962)

    Article  Google Scholar 

  11. K.B. Agarwal, K.D. Ghanekar, Prediction of CBR from plasticity characteristics of soil, in Proceedings of the 2nd southeast Asian conference on soil engineering, Singapore, June 11--15 (Asian Institute of Technology, Bangkok, 1970) pp. 571--576

  12. M. Linveh, Transp. Res. Rec. 1219, 56 (1989)

    Google Scholar 

  13. D.J. Stephens, J. Civ. Eng. S. Afr. 32, 523 (1990)

    Google Scholar 

  14. T. Al-Refeai, A. Al-suhaibani, King Saud U. J. Eng. Sci. 9, 191 (1997)

    Google Scholar 

  15. M.W. Kin, California Bearing Ratio Correlation with Soil Index Properties, Master degree Project, Faculty of Civil Engineering, University Technology, Malaysia (2006)

  16. C.N.V. Satyanarayana Reddy, K. Pavani, Mechanically stabilized soils-regression equation for CBR evaluation, in Proceedings of the Indian geotechnical conference, Chennai, India (2006) pp. 731--734

  17. P. Vinod, C. Reena, Highw. Res. J. IRC 1, 89 (2008)

    Google Scholar 

  18. S.R. Patel, M.D. Desai, CBR predicted by index properties for alluvial soils of South Gujarat, Dec. 16--18, in Proceedings of the Indian Geotechnical Conference, India (2010) pp. 79--82

  19. G.V. Ramasubbarao, G. Siva Sankar, Jordan J. Civ. Eng. 7, 354 (2013)

    Google Scholar 

  20. M.H. Alawi, M.I. Rajab, Road Mater. Pavement Des. 14, 211 (2013)

    Article  Google Scholar 

  21. V. Chandrakar, R.K. Yadav, Int. Res. J. Eng. Technol. 3, 772 (2016)

    Google Scholar 

  22. A.O. Samson, Int. J. Sci. Eng. Res. 8, 1460 (2017)

    Google Scholar 

  23. F.P. Nejad, M.B. Jaksa, M. Kakhi, B.A. McCabe, Comput. Geotech. 36, 1125 (2009)

    Article  Google Scholar 

  24. J.A. Abdalla, M.F. Attom, R. Hawileh, Environ. Earth Sci. 73, 5463 (2015)

    Article  Google Scholar 

  25. M.J. Sulewska, Comput. Assist. Mech. Eng. Sci. 18, 231 (2011)

    Google Scholar 

  26. Z. Chik, Q.A. Aljanabi, A. Kasa, M.R. Taha, Arab. J. Geosci. 7, 4877 (2014)

    Article  Google Scholar 

  27. F. Saboya, M.G. Alves, W.D. Pinto, Eng. Geol. 86, 211 (2006)

    Article  Google Scholar 

  28. W. Li, S. Mei, S. Zai, S. Zhao, X. Liang, Int. J. Rock Mech. Mining Sci. 43, 503 (2006)

    Article  Google Scholar 

  29. H.J. Oh, B. Pradhan, Comput. Geosci. 37, 1264 (2011)

    Article  ADS  Google Scholar 

  30. H. Jalalifara, S. Mojedifar, A.A. Sahebi, H. Nezamabadi-pour, Comput. Geotech. 38, 783 (2011)

    Article  Google Scholar 

  31. D. Padmini, K. Ilamparuthi, K.P. Sudheer, Comput. Geotech. 35, 33 (2008)

    Article  Google Scholar 

  32. S. Levasseur, Y. Malecot, M. Boulon, E. Flavigny, Int. J. Numer. Anal. Methods Geomech. 32, 189 (2008)

    Article  Google Scholar 

  33. P. McCombie, P. Wilkinson, Comput. Geotech. 29, 699 (2002)

    Article  Google Scholar 

  34. P. Samui, Comput. Geotech. 35, 419 (2008)

    Article  Google Scholar 

  35. P. Samui, D.P. Kothari, Sci. Iran. 18, 53 (2011)

    Article  Google Scholar 

  36. B. Yildirim, O. Gunaydin, Expert Syst. Appl. 38, 6381 (2011)

    Article  Google Scholar 

  37. T. Taskiran, Adv. Eng. Softw. 41, 886 (2010)

    Article  Google Scholar 

  38. C. Venkatasubramanian, G. Dhinakaran, Int. J. Civ. Struct. Eng. 2, 605 (2011)

    Google Scholar 

  39. S. Bhatt, P.K. Jain, Am. Int. J. Res. Sci. Technol. Eng. Math. 8, 156 (2014)

    Google Scholar 

  40. A.G. Ivakhnenko, Sov. Autom. Control Avtomot. 9, 21 (1976)

    Google Scholar 

  41. A. Kordnaeij, F. Kalantary, B. Kordtabar, H. Mola-Abasi, Soils Found. 55, 1335 (2015)

    Article  Google Scholar 

  42. A. Ardakani, A. Kordnaeij, Eur. J. Environ. Civ. Eng. 23, 449 (2019)

    Article  Google Scholar 

  43. M. Hassanlourad, A. Ardakani, A. Kordnaeij, H. Mola-Abasi, Eur. Phys. J. Plus 132, 357 (2017)

    Article  Google Scholar 

  44. R.A. Jirdehi, H.T. Mamoudan, H.H. Sarkaleh, Appl. Appl. Math. 9, 528 (2014)

    Google Scholar 

  45. N.R. Draper, H. Smith, Applied Regression Analysis, 2nd ed. (John Wiley & Sons Inc, NY, 1981)

  46. S. Haykin, Neural Network: A Comprehensive Foundation (MacMillan College Publishing Co., New York, 1994)

  47. V.A. Vissikirsky, V.S. Stepashko, I.K. Kalavrouziotis, P.A. Drakatos, Instrum. Sci. Technol. 33, 229 (2005)

    Article  Google Scholar 

  48. H. Ghanadzadeh, M. Ganji, S. Fallahi, Appl. Math. Model. 36, 4096 (2012)

    Article  Google Scholar 

  49. W. Zhu, J. Wang, W. Zhang, D. Sun, Atmos. Environ. 51, 29 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fikret Kurnaz.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fikret Kurnaz, T., Kaya, Y. Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network. Eur. Phys. J. Plus 134, 326 (2019). https://doi.org/10.1140/epjp/i2019-12692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12692-0

Navigation