Skip to main content
Log in

Beat-to-beat sensitivity analysis of human systemic circulation coupled with the left ventricle model of the heart: A simulation-based study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Model-based simulations are widely used to study the dynamics of the cardiovascular system. More importantly, model-based simulations have flexibility to run virtual simulations to know the behavior of hemodynamics in different realistic scenarios. Within this work, a lumped-parameter model of left ventricle (LV) is coupled with the complete systemic circulation (SC). Where, different heart rates are fed into the heart model and their impact are studied in a patient having different levels of aortic abnormalities (stenoses, aneurysms). For this purpose, global sensitivity analysis was used to quantify the impact of aortic abnormalities in the SC in complement with different heart rates. Moreover, simulation-based study is an important tool for medical doctors, students and teachers to enhance their understanding of hemodynamics in healthy and diseased states of vessels, as well as to identify the best possible measurement locations for pressure and flow to detect aortic abnormalities in the SC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Lateef, J. Emerg. Trauma Shock 3, 348 (2010)

    Article  Google Scholar 

  2. W.W. Chen, H. Gao, X.Y. Luo, N.A. Hill, J. Biomech. 49, 2445 (2016)

    Article  Google Scholar 

  3. R. Huttary, L. Goubergrits, C. Schütte, S. Bernhard, Comput. Biol. Med. 87, 104123 (2017)

    Article  Google Scholar 

  4. M.E. Laura, T.T. Hien, C. Zapata, Cardiovasc. Eng. 8, 94 (2008)

    Article  Google Scholar 

  5. H.A. Abdulmohsen, J. Fam. Community Med. 17, 35 (2010)

    Article  Google Scholar 

  6. M. Tavlasoglua, A.B. Durukanb, H.A. Gurbuzb, A. Jahollaric, A. Gulerc, Eur. J. Cardio-Thorac. Surg. 47, 812 (2015)

    Article  Google Scholar 

  7. Y.T. Kim, J.S. Lee, C.H. Youn, J.S. Choi, E.B. Shim, J. Korean Med. Sci. 28, 1161 (2013)

    Article  Google Scholar 

  8. R.L. Watrous, A computational model of cardiovascular physiology and heart sound generation, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2009) pp. 3105--3110

  9. S. Paeme et al., BioMed. Eng. OnLine 10, 86 (2011)

    Article  Google Scholar 

  10. L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani, Comput. Vis. Sci. 2, 75 (1999)

    Article  Google Scholar 

  11. L. Formaggia, A. Veneziani, Reduced and multiscale models for the human cardiovascular system, report of two lectures given at the 7th VKI lecture series on Biological Fluid Dynamics, Belgium, May, 2003

  12. K. Lagana, R. Balossinoa, F. Migliavaccaa, G. Pennatia, E.L. Boveb, M.R. de Levalc, G. Dubinid, J. Biomech. 38, 1129 (2005)

    Article  Google Scholar 

  13. A.P. Avolio, Med. Biol. Eng. Comput. 18, 709 (1980)

    Article  Google Scholar 

  14. R. Gul, Mathematical modeling and sensitivity analysis of a lumped-parameter model of the human cardiovascular system, PhD Thesis, Freie Universitat Berlin, Germany (2016)

  15. R. Gary et al., J. Physiol. 594, 6833 (2016)

    Article  Google Scholar 

  16. M.E. Laura et al., Cardiovasc. Eng. 8, 94 (2008)

    Article  Google Scholar 

  17. R.W. Deboer, Am. J. Physiol. 253, H680-9 (1987)

    Google Scholar 

  18. R. Huttary, Comput. Biol. Med. 87, 104 (2017)

    Article  Google Scholar 

  19. A. Ferreira, A.S. Marwan, J.R. Boston, J.F. Antaki, A non-linear state space model of a combined cardiovascular system and a rotary pump, in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain (IEEE, 2005)

  20. R. Gul, S. Bernhard, Appl. Math. Model. 40, 7724 (2016)

    Article  MathSciNet  Google Scholar 

  21. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis. The Primer (John Wiley & Sons, 2008)

  22. I. Sobol, Mat. Model. 2, 112 (1990) (in Russian, translated in English)

    MathSciNet  Google Scholar 

  23. R. Gul, S. Bernhard, Math. Biosci. 269, 104 (2015)

    Article  MathSciNet  Google Scholar 

  24. H. Suga, K. Sugawa, Circ. Res. 35, 117 (1974)

    Article  Google Scholar 

  25. J.A. Elefteriades, Yale J. Biol. Med. 81, 175 (2008)

    Google Scholar 

  26. B.S. Owen, J.J. Gregg, J.L. Michael, A.S. Harriet, I.C. Marc, Am. J. Neuroradiol. 21, 643 (2000)

    Google Scholar 

  27. E. Saliba, Sia Ying, Int. J. Cardiol. Heart Vasc. 6, 91 (2015)

    Google Scholar 

  28. M.J.W. Jansen, Comput. Phys. Commun. 117, 35 (1999)

    Article  ADS  Google Scholar 

  29. M.J.W. Jansen, W.A.H. Rossing, R.A. Daamen, Monte Carlo estimation of uncertainty contributions from several independent multivariate sources, Predictability and Nonlinear Modeling in Natural Sciences and Economics (Kluwer Academic Publishers, Dordrecht, 1994) pp. 334--343

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gul.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, R., Shahzadi, S. Beat-to-beat sensitivity analysis of human systemic circulation coupled with the left ventricle model of the heart: A simulation-based study. Eur. Phys. J. Plus 134, 314 (2019). https://doi.org/10.1140/epjp/i2019-12673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12673-3

Navigation