On the propagation of the non-similar wall jet flows with suction/injection

  • Amin JafarimoghaddamEmail author
  • I. Pop
  • J. H. Merkin
Regular Article


The present work is dedicated to the analytic analysis of the non-similar wall jet flows subject to various suction/injection profiles for the 1st time. To this end, it is employed regular perturbation technique to expand the solution about the Glauert origin. We have propagated the perturbed field up to the 15th order to identify the compatibility of the technique with the problem of interest as well as to explore some important features associated with the various suction/injection profiles. In the case of suction, the maximum normalized shear stress at the wall evolves as the exponent of the suction profiles varies; afterwards, a decrease in the quantity is expected so as to eventually annihilate the entire jet. Similarly, in the injection case, the exponent of the injection profiles plays a core role in the evolution of the normalized shear stress at the wall, the universal distance in which the quantity becomes zero and the recovery of the quantity after this critical location.


  1. 1.
    M.B. Glauert, J. Fluid Mech. 1, 625 (1956)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J.H. Merkin, D.J. Needham, J. Eng. Math. 20, 21 (1986)CrossRefGoogle Scholar
  3. 3.
    D.J. Needham, J.H. Merkin, J. Eng. Math. 21, 17 (1987)CrossRefGoogle Scholar
  4. 4.
    J. Cohen, M. Amitay, B.J. Bayly, Phys. Fluids 4, 283 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    E. Magyari, B. Keller, Eur. J. Mech. B Fluids 23, 601 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Hang Xu, Shi-Jun Liao, Guo-Xiong Wu, Eur. J. Mech. B/Fluids 27, 322 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Xu, G. Wu, Sci. China Phys. Mech. Astron. 54, 502 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    William H. Schwarz, Bruce Caswell, Chem. Eng. Sci. 16, 338 (1961)CrossRefGoogle Scholar
  9. 9.
    Rama Subba Reddy Gorla, Int. J. Eng. Sci. 11, 841 (1973)CrossRefGoogle Scholar
  10. 10.
    J.L. Bansal, S.S. Tak, Appl. Sci. Res. 34, 299 (1978)CrossRefGoogle Scholar
  11. 11.
    M. Turkyilmazoglu, Eur. J. Mech. B/Fluids 59, 18 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Sandeep, I.L. Animasaun, Alex. Eng. J. 56, 263 (2017)CrossRefGoogle Scholar
  13. 13.
    S.Z. Ali Zaidi, S.T. Mohyud-Din, Aerospace Sci. Technol. 49, 225 (2016)CrossRefGoogle Scholar
  14. 14.
    Syed Zulfiqar Ali Zaidi, Syed Tauseef Mohyud-din, Bandar Bin-Mohsen, Eng. Comput. 34, 739 (2017)CrossRefGoogle Scholar
  15. 15.
    S.T. Mohyud-Din, S.Z.A. Zaidi, Neural Comput. Appl. 28, 599 (2017)CrossRefGoogle Scholar
  16. 16.
    S.T. Mohyud-Din, Z.A. Zaidi, B. Bin-Mohsin, Neural Comput. Appl. 28, 749 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Mahmood, Acta Mech. 71, 51 (1988)CrossRefGoogle Scholar
  18. 18.
    S. Fukusako, J. Spacecraft Rockets 7, 91 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    R.S.R. Gorla, Chem. Eng. Commun. 140, 139 (1996)CrossRefGoogle Scholar
  20. 20.
    Asterios Pantokratoras, Mech. Res. Commun. 36, 747 (2009)CrossRefGoogle Scholar
  21. 21.
    Amin Jafarimoghaddam, Eur. J. Mech./B Fluids 71, 77 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Amin Jafarimoghaddam, Therm. Sci. Eng. Prog. 8, 375 (2018)CrossRefGoogle Scholar
  23. 23.
    Amin Jafarimoghaddam, Eur. J. Mech./B Fluids 75, 44 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Amin Jafarimoghaddam, Therm. Sci. Eng. Prog. 4, 175 (2017)CrossRefGoogle Scholar
  25. 25.
    Amin Jafarimoghaddam, Ioan Pop, Int. J. Numer. Methods Heat Fluid Flow 29, 1010 (2019)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TehranIran
  2. 2.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Department of Applied MathematicsUniversity of LeedsLeedsUK

Personalised recommendations