Nonclassical properties of induced states from single-mode squeezed vacuum state related with Hermite excited elementary superposition operation

  • Xue-xiang XuEmail author
  • Jian-ming Wang
  • Hong-chun Yuan
  • Ye-jun Xu
  • Xiang-guo Meng
Regular Article


Based on single-mode squeezed vacuum state (SVS) and Hermite-excited elementary superposition operator \( H_{m} (xa^{\dagger}+ya)\), we induce two new quantum states, i.e., Hermite-excited squeezed vacuum state (HSVS) and Hermite-excite-orthogonalized squeezed vacuum state (HOSVS). HSVS is obtained by applying the operator on SVS and HOSVS is obtained by applying the orthogonalizer on SVS, where HSVS is just HOSVS for odd m. We study and compare mathematical and nonclassical properties for SVS, HSVS and HOSVS, including photon number distribution, Mandel’s Q parameter, quadrature squeezing, and Wigner function. Numerical results show that i) HSVS and HOSVS have only even (odd) photon components for even (odd) m; ii) HSVS and HOSVS can exhibit sub-Poissonian statistics in low-squeezing parameter regime and squeezing effect in large-squeezing parameter regime; iii) moreover, squeezing is always incompatible with sub-Poissonianity; iv) Wigner functions for HSVS and HOSVS have negative values in phase space.


  1. 1.
    F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rep. 428, 53 (2006)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Eur. Phys. J. Plus 133, 346 (2018)CrossRefGoogle Scholar
  3. 3.
    B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Int. J. Mod. Phys. A 33, 1850134 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    E. Schrodinger, Naturwissenschaften 23, 807 (1935)ADSCrossRefGoogle Scholar
  5. 5.
    E. Schrodinger, Naturwissenschaften 23, 823 (1935)ADSCrossRefGoogle Scholar
  6. 6.
    E. Schrodinger, Naturwissenschaften 23, 844 (1935)ADSCrossRefGoogle Scholar
  7. 7.
    G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Klauder, B. Skagerstam, Coherent States (World Scientific, Singapore, 1985)Google Scholar
  9. 9.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A. Zavatta, S. Viciani, M. Bellini, Phys. Rev. A 72, 023820 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, Ph. Grangier, Science 312, 83 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, Ph. Grangier, Phys. Rev. Lett. 98, 030502 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Zavatta, V. Parigi, M.S. Kim, H. Jeong, M. Bellini, Phys. Rev. Lett. 103, 140406 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    P. Marek, H. Jeong, M.S. Kim, Phys. Rev. A 78, 063811 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    G.V. Avosopiants, K.G. Katamadze, Yu.I. Bogdanov, B.I. Bantysh, S.P. Kulik, Laser Phys. Lett. 15, 075205 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Coelho, L.S. Costanzo, A. Zavatta, C. Hughes, M.S. Kim, M. Bellini, Phys. Rev. Lett. 116, 110501 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M. Jezek, M. Micuda, I. Straka, M. Mikova, M. Dusek, J. Fiurasek, Phys. Rev. A 89, 042316 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M.R. Vanner, M. Aspelmeyer, M.S. Kim, Phys. Rev. Lett. 110, 010504 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Bergou, M. Hillery, D. Yu, Phys. Rev. A 43, 515 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    S. Datta, R. D’Souza, Phys. Lett. A 215, 149 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Tan, L.J. Xu, S.J. Ma, Int. J. Theor. Phys. 51, 462 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Schnabel, Phys. Rep. 684, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)Google Scholar
  25. 25.
    R.A. Brewster, T.B. Pittman, J.D. Franson, Phys. Rev. A 98, 033818 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930)Google Scholar
  27. 27.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)Google Scholar
  28. 28.
    L. Mandel, Opt. Lett. 4, 205 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    C.C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, London, 2005)Google Scholar
  30. 30.
    E.P. Wigner, Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  31. 31.
    A. Kenfack, K. Zyczkowski, J. Opt. B, Quantum Semiclass. Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X.X. Xu, H.C. Yuan, Phys. Lett. A 380, 2342 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    X.G. Meng, J.S. Wang, B.L. Liang, C.X. Han, Front. Phys. 13, 130322 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue-xiang Xu
    • 1
    Email author
  • Jian-ming Wang
    • 1
  • Hong-chun Yuan
    • 2
  • Ye-jun Xu
    • 3
  • Xiang-guo Meng
    • 4
  1. 1.Center for Quantum Science and TechnologyJiangxi Normal UniversityNanchangChina
  2. 2.College of Electrical and Optoelectronic EngineeringChangzhou Institute of TechnologyChangzhouChina
  3. 3.School of Mechanical and Electronic EngineeringChizhou UniversityChizhouChina
  4. 4.Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations