Skip to main content
Log in

Thermal and optical properties of two molecular potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We solve the Schrödinger wave equation for the generalized Morse and cusp molecular potential models. In the limit of high temperature we, first, need to calculate the canonical partition function which is basically used to study the behavior of the thermodynamic functions. Based on this, we further calculate the thermodynamic quantities, such as the free energy, the entropy, the mean energy and the specific heat. Their behavior with the temperature has been investigated. In addition, the susceptibility for two level systems is also found by applying the incident time-dependent field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Suparmi, C. Cari, U.A. Deta, Chin. Phys. B 23, 090304 (2014)

    Article  ADS  Google Scholar 

  2. M. Aslanzadeh, A.A. Rajabi, Eur. Phys. J. A 50, 151 (2014)

    Article  Google Scholar 

  3. G.-F. Wei, S.-H. Dong, Phys. Lett. B 686, 288 (2010)

    Article  ADS  Google Scholar 

  4. X.-C. Zhang, Q.-W. Liu, C.-S. Jia, L.-Z. Wang, Phys. Lett. A 340, 59 (2005)

    Article  ADS  Google Scholar 

  5. A. Durmus, A. Ozfidan, J. Math. Phys. 55, 102105 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Barakat, S. Abdalla, J. Math. Phys. 54, 102105 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Mod. Phys. Lett. A 26, 2703 (2011)

    Article  ADS  Google Scholar 

  8. H.P. Obong, A.N. Ikot, I.O. Owate, J. Kor. Phys. Soc. 66, 867 (2015)

    Article  ADS  Google Scholar 

  9. H. Panahi, L. Jahangiri, Ann. Phys. 354, 306 (2015)

    Article  ADS  Google Scholar 

  10. M. Eshghi, S.M. Ikhdair, Math. Methods Appl. Sci. 37, 2829 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Eshghi, S.M. Ikhdair, Z. Naturforsch. 69a, 111 (2014)

    ADS  Google Scholar 

  12. S.-H. Dong, R. Lemus, A. Frank, Int. J. Quantum Chem. 86, 433 (2002)

    Article  Google Scholar 

  13. S.-H. Dong, Cand. J. Phys. 80, 129 (2002)

    Article  ADS  Google Scholar 

  14. S.-H. Dong, G.-H. Sun, Phys. Lett. A 314, 261 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Yu, S.-H. Dong, G.-H. Sun, Phys. Lett. A 322, 290 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. W.-C. Qiang, S.-H. Dong, Phys. Lett. A 363, 169 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. G.-H. Sun, S.-H. Dong, Commun. Theor. Phys. 58, 815 (2012)

    Article  ADS  Google Scholar 

  18. S.-H. Dong, Factorization Method in Quantum Mechanics (Springer, 2007)

  19. S.M. Ikhdair, J. Math. Phys. 51, 023525 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Yu, S.-H. Dong, A. Antellon, M. Lozada-Cassou, Eur. Phys. J. C 45, 525 (2006)

    Article  ADS  Google Scholar 

  21. C.A. Onate, J.O. Ojonubah, Int. J. Mod. Phys. E 24, 155020-1 (2015)

    Article  Google Scholar 

  22. S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)

    Article  Google Scholar 

  23. D.-L. Xiao, M.-Y. Lai, X.-Y. Pan, Chin. Phys. B 25, 010307 (2016)

    Article  Google Scholar 

  24. V. Sanos, R.V. Maluf, C.A.S. Almeida, Ann. Phys. 349, 402 (2014)

    Article  ADS  Google Scholar 

  25. S.-H. Dong, M. Lozada-Cassou, J. Yu, F. Jimenez-Angeles, A.L. Riverra, Int. J. Quantum Chem. 107, 366 (2007)

    Article  ADS  Google Scholar 

  26. S.-H. Dong, M. Cruz-Irisson, J. Math. Chem. 50, 881 (2012)

    Article  MathSciNet  Google Scholar 

  27. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  28. L.H. Zhang, X.P. Li, C.S. Jia, Int. J. Theor. Phys. 111, 1870 (2011)

    Google Scholar 

  29. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  30. S. Flugge, Practical quantum mechanics (Springer, Berlin, 1974)

  31. G.E. Anderws, R. Askey, R. Roy, Special Functions (Cambridge University Press, London, 2000)

  32. M. Abramovitz, I.A. Astegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, NY, 1972) p. 295

  33. C. Berkdemir, J. Han, Chem. Phys. Lett. 409, 203 (2005)

    Article  ADS  Google Scholar 

  34. O. Bayrak, I. Boztosunt, arxiv:nucl-th/0604042v1 (2006)

  35. R.K. Pathria, Statistical Mechanics, 1st ed. (Pergamon Press, Oxford, 1972)

  36. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, MA, 1994)

  37. R.W. Boyd, Nonlinear Optics (Academic Press, Elsevier, San Diego, 2008)

  38. V.M. Villalba, W. Greiner, Phys. Rev. A 67, 052707 (2003)

    Article  ADS  Google Scholar 

  39. A.N. Ikot, H. Hassanabadi, N. Salehi, H.P. Obong, M.C. Onyeaju, Ind. J. Phys. 89, 1221 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Sever.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshghi, M., Sever, R. & Ikhdair, S.M. Thermal and optical properties of two molecular potentials. Eur. Phys. J. Plus 134, 155 (2019). https://doi.org/10.1140/epjp/i2019-12634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12634-x

Navigation