Elementary waves, Riemann problem, Riemann invariants and new conservation laws for the pressure gradient model

  • Mahmoud A. E. AbdelrahmanEmail author
  • G. M. Bahaa
Regular Article


We study the pressure gradient system of nonlinear conservation laws. We present the parametrization of shocks and rarefaction waves, then the solution of Riemann problem is given. Relying on the Riemann solution, we establish the uniqueness of the Riemann problem for the pressure gradient system. We also formulate the Riemann invariants corresponding to the pressure gradient system. We will present some interesting applications for the Riemann invariants. The first application is to represent the pressure gradient model in a diagonal representation. Actually this diagonal form admits the existence of global smooth solution for the pressure gradient system. The second application is to give new conservation laws corresponding to the pressure gradient model.


  1. 1.
    J.Li, T. Zhang, S. Yang, The two-dimensional Riemann problem of gas dynamics, in Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 98 (Longman Scientic & Technical, New York, 1998)Google Scholar
  2. 2.
    Y. Zheng, Commun. Part. Differ. Equ. 22, 1849 (1997)CrossRefGoogle Scholar
  3. 3.
    M.A.E. Abdelrahman, M. Kunik, J. Comput. Phys. 275, 213 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.A.E. Abdelrahman, Nonlinear Anal. 155, 140 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.A.E. Abdelrahman, Z. Naturforsch. 72, 873 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M.A.E. Abdelrahman, Comput. Appl. Math. 37, 3503 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M.A.E. Abdelrahman, Eur. Phys. J. Plus 133, 304 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Glimm, Commun. Pure Appl. Math. 18, 697 (1995)CrossRefGoogle Scholar
  9. 9.
    J. Smoller, B. Temple, Commun. Math. Phys. 156, 67 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    T.R. Sekhar, V.D. Sharma, Methods Appl. Anal. 17, 165 (2010)MathSciNetGoogle Scholar
  11. 11.
    K. Song, Commun. Part. Differ. Equ. 28, 199 (2003)CrossRefGoogle Scholar
  12. 12.
    H. Yang, T. Zhang, J. Math. Anal. Appl. 298, 523 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Zhang, J. Li, T. Zhang, Discr. Contin. Dyn. Syst. 4, 609 (1998)CrossRefGoogle Scholar
  14. 14.
    T. Zhang, H. Yang, Y. He, Appl. Math. Comput. 199, 231 (2008)MathSciNetGoogle Scholar
  15. 15.
    P.D. Lax, Commun. Pure Appl. Math. 10, 537 (1957)CrossRefGoogle Scholar
  16. 16.
    R.J. LeVeque, Numerical methods for conservation laws (Birkhäuser Verlag Basel, Switzerland, 1992)Google Scholar
  17. 17.
    A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, in Applied Mathematical Sciences, Vol. 53 (Springer, 1984)Google Scholar
  18. 18.
    D. Hoff, J. Math. Anal. Appl. 86, 221 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Ruan, C. Zhu, Nonlinear Anal. 60, 993 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P.G. LeFloch, M. Yamazaki, Int. J. Dyn. Syst. Differ. Equ. 1, 20 (2007)MathSciNetGoogle Scholar
  21. 21.
    L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, edited by J.M. Ball (Oxford, 1982) NATO ASI Ser. C 111, 263 (1983)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Department of Mathematics and Computer Science, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations