Skip to main content

Bimetallic nanostructures on porous silicon with controllable surface plasmon resonance

Abstract.

The most intensive surface plasmon resonance (SPR) band is typical for the metallic particles of 10-150nm diameters. The SPR band of such nanoparticles is usually narrow and allows using just one laser (i.e. limited range of excitation wavelength) to achieve the maximal enhancement of electromagnetic field near metallic nanostructures caused by surface plasmon oscillations. It hinders usability of plasmonic nanostructures in some application including surface enhanced Raman scattering (SERS) spectroscopy. To overcome this hurdle enlarged metallic nanostructures are fabricated resulting in a broadening of the SPR band due to additional oscillation modes. However, the SPR bands of the enlarged particles are characterized by less intensity and weak enhancement at different wavelengths. In this paper, we proposed an alternative way for the SPR band broadening by use of bimetallic nanostructures on a sculptured template. Plasmonic substrates were fabricated by sequential copper electroplating and silver electroless deposition on porous silicon. Presented data implies that variation in morphology and ratio of the silver/copper nanostructures allow to control position of their SPR band from blue to near-infrared (IR) range. It is shown that SERS-spectroscopy with the fabricated nanostructures provide equal detection limits of rhodamine 6G under red and near-IR excitation wavelengths.

This is a preview of subscription content, access via your institution.

References

  1. J. Gusakova, X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, B.K. Tay, Phys. Status Solidi A 214, 1700218 (2017)

    Article  ADS  Google Scholar 

  2. M. Salvato, C. Cirillo, R. Fittipaldi, S.L. Prischepa, A. Vecchione, F. De Nicola, P. Castrucci, M. De Crescenzi, M. Scarselli, C. Attanasio, Carbon 105, 544 (2016)

    Article  Google Scholar 

  3. R. Barretta, M. Čanadija, L. Feo, R. Luciano, F. Marotti de Sciarra, R. Penna, Composites Part B: Eng. 142, 273 (2018)

    Article  Google Scholar 

  4. R. Barretta, M. Brcic, M. Canacija, R. Luciano, F.M. de Sciarra, Eur. J. Mech. A Solids 65, 1 (2017)

    MathSciNet  Article  ADS  Google Scholar 

  5. K.V. Girel, A.Y. Panarin, H.V. Bandarenka, G. Isic, V.P. Bondarenko, S.N. Terekhov, Nanotechnology 29, 395708 (2018)

    Article  Google Scholar 

  6. M. Fan, G.F.S. Andrade, A.G. Brolo, Anal. Chim. Acta 693, 7 (2011)

    Article  Google Scholar 

  7. S. Laing, L.E. Jamieson, K. Faulds, D. Graham, Nat. Rev. Chem. 1, 0060 (2017)

    Article  Google Scholar 

  8. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  9. B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today 15, 16 (2012)

    Article  Google Scholar 

  10. E. Koglin, J.M. Sequaris, J.C. Fritz, P. Valenta, J. Mol. Struct. 114, 219 (1984)

    Article  ADS  Google Scholar 

  11. H. Bandarenka, K. Artsemyeva, S. Redko, A. Panarin, S. Terekhov, V. Bondarenko, Phys. Status Solidi C 10, 624 (2013)

    Article  ADS  Google Scholar 

  12. K. Fukami, M.L. Chourou, R. Miyagawa, Á.M. Noval, T. Sakka, M. Manso-Silván, R.J. Martín-Palma, Y.H. Ogata, Materials 4, 791 (2011)

    Article  ADS  Google Scholar 

  13. G. Marinaro, G. Das, A. Giugni, M. Allione, B. Torre, P. Candeloro, J. Kosel, E. Di Fabrizio, Materials 11, 827 (2018)

    Article  ADS  Google Scholar 

  14. W.F. Jiang, W.W. Shan, H. Ling, Y.S. Wang, Y.X. Cao, X.J. Li, Condens. Matter 22, 415105 (2010)

    Article  Google Scholar 

  15. H. Bandarenka, S. Redko, A. Smirnov, A. Panarin, S. Terekhov, P. Nenzi, M. Balucani, V. Bondarenko, Nanoscale Res. Lett. 7, 477 (2012)

    Article  ADS  Google Scholar 

  16. M.K. Oh, H.J. Baik, S.K. Kim, S. Park, J. Mater. Chem. 21, 19069 (2011)

    Article  Google Scholar 

  17. G. Arzumanyan, N. Doroshkevich, K. Mamatkulov, S. Shashkov, K. Girel, H. Bandarenka, V. Borisenko, Phys. Status Solidi A 214, 1600915 (2017)

    Article  ADS  Google Scholar 

  18. L.J. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, Nano Lett. 5, 2034 (2005)

    Article  ADS  Google Scholar 

  19. K. Girel, E. Yantcevich, G. Arzumanyan, N. Doroshkevich, H. Bandarenka, Phys. Status Solidi A 213, 2911 (2016)

    Article  ADS  Google Scholar 

  20. M. Yan, Y. Xiang, L. Liu, L. Chai, X. Lia, T. Feng, RSC Adv. 4, 98 (2014)

    Article  Google Scholar 

  21. K. Hasna, A. Antony, J. Puigdollers, K.R. Kumar, M.K. Jayaraj, Nano Res. 9, 3075 (2016)

    Article  Google Scholar 

  22. L. Canham, Properties of Porous Silicon (INSPEC, London, 1997)

  23. S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Adv. Mater. 15, 1595 (2003)

    Article  Google Scholar 

  24. H. Bandarenka, K.V. Girel, S.A. Zavatski, A. Panarin, S.N. Terekhov, Materials 11, 852 (2018)

    Article  ADS  Google Scholar 

  25. IUPAC Manual of symbols and terminology for physicochemical quantities and units (Butterworths, London, 1972)

  26. K.J. Khajehpour, T. Williams, L. Bourgeois, S. Adeloju, Chem. Commun. 48, 5349 (2012)

    Article  Google Scholar 

  27. D. Yakimchuk, E. Kaniukov, V. Bundyukova, L. Osminkina, S. Teichert, S. Demyanov, V. Sivakov, MRS Commun. 8, 95 (2018)

    Article  Google Scholar 

  28. M. Kosovic, M. Balarin, M. Ivanda, V. Derek, M. Marcius, M. Ristic, O. Gamulin, Appl. Spectrosc. 69, 1417 (2015)

    Article  ADS  Google Scholar 

  29. K. Artsemyeva, A. Dolgiy, H. Bandarenka, A. Panarin, I. Khodasevich, S. Terekhov, V. Bondarenko, ECS Trans. 53, 85 (2013)

    Article  Google Scholar 

  30. C. Novara, A. Lambetti, A. Chiado, A. Virga, P. Rivolo, F. Geobaldo, F. Giorgis, RSC Adv. 6, 21865 (2016)

    Article  Google Scholar 

  31. H. Bandarenka, S. Redko, P. Nenzi, M. Balucani, V. Bondarenko, J. Nanosci. Nanotech. 12, 8725 (2012)

    Article  Google Scholar 

  32. A.M. Alwan, I.A. Naseef, A.B. Dheyab, Plasmonics 13, 2037 (2018)

    Article  Google Scholar 

  33. H. Bandarenka, A. Shapel, M. Balucani, Solid State Phen. 151, 222 (2009)

    Article  Google Scholar 

  34. Y.H. Ogata, J. Sasano, J. Jorne, T. Tsuboi, F.A. Harraz, T. Sakka, Phys. Status Solidi A 182, 71 (2000)

    Article  ADS  Google Scholar 

  35. J.A. Dieringer, K.L. Wustholz, D.J. Masiello, J.P. Camden, S.L. Kleinman, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 131, 849 (2009)

    Article  Google Scholar 

  36. A. Pimentel, A. Araújo, B.J. Coelho, D. Nunes, M.J. Oliveira, M.J. Mendes, H. Águas, R. Martins, E. Fortunato, Materials 10, 1351 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Bandarenka.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khinevich, N., Zavatski, S., Kholyavo, V. et al. Bimetallic nanostructures on porous silicon with controllable surface plasmon resonance. Eur. Phys. J. Plus 134, 75 (2019). https://doi.org/10.1140/epjp/i2019-12567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12567-4