Investigation of structural, electrical conductivity and dielectric properties of bulk Azure A chloride

  • H. A. M. Ali
  • E. F. M. El-ZaidiaEmail author
Regular Article


The structure of the powder of Azure A chloride was analyzed by the X-ray diffraction and scanning electron microscopy techniques. The dielectric properties and electrical conductivity were studied for bulk Azure A chloride as pellets in the frequency range of 100-5000kHz. The frequency exponent decreased with the raise in temperature. The correlated barrier hopping is the convenient mechanism for AC conduction in bulk Azure A chloride. The temperature dependence for AC conductivity followed the Arrhenius variation with varied activation energies at certain frequencies. The observed behavior of the dielectric constant and dielectric loss was investigated at different temperatures. The relation between the real and imaginary components of the complex impedance for bulk Azure A chloride was delineated in Nyquist plots at numerous temperatures.


  1. 1.
    O.Y. Kim, J.Y. Lee, J. Ind. Eng. Chem. 18, 1029 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Kim, A. Facchetti, T.J. Marks, Science 318, 76 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    L. Huo, J. Hou, S. Zhang, H.-Y. Chen, Y. Yang, Angew. Chem. 122, 1542 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Spanggaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004)CrossRefGoogle Scholar
  5. 5.
    C.W. Lee, O.Y. Kim, J.Y. Lee, J. Ind. Eng. Chem. 20, 1198 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.J. Chang, P.-T. Chou, Y.-Z. Lin, M. Watanabe, C.-J. Yang, T.-M. Chin, T.J. Chow, J. Mater. Chem. 22, 21704 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Snehalatha, I. Hubert Joe, C. Ravikumar, V.S. Jayakumar, J. Raman Spectrosc. 40, 176 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J.-S. Luo, Z.-Q. Wan, C.-Y. Jia, Chin. Chem. Lett. 27, 1304 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Reyes-Reyes, D.L. Carroll, W. Blau, R. Lopez-Sandoval, J. Nanotechnol. 2011, 589241 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Keskin, A. Altindal, U. Avciata, A. GÜL, Bull. Mater. Sci. 37, 461 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Kumar, M. Kaushik, S. Chaudhary, S. Kukreti, J. Drug Metab. Toxico. 7, 1000214 (2016)Google Scholar
  12. 12.
    A. Abdel Aal, Egypt. J. Solids 29, 303 (2006)Google Scholar
  13. 13.
    H.A.M. Ali, H.S. Soliman, M. Saadeldin, K. Sawaby, Mater. Sci. Semicond. Process. 18, 141 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Shirley, The CRYSFIRE System for Automatic Powder Indexing: User's Manual (The Lattice Press, Guildford, England, 2000)Google Scholar
  15. 15.
    J. Laugier, B. Bochu, LMGP-Suite of Programs for the Interpretation of X-ray Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46, 38042 (Saint-Martin d'Héres, 2000)Google Scholar
  16. 16.
    M.M. El-Nahass, A.A.A. Darwish, E.F.M. El-Zaidia, A.E. Bekheet, J. Non-Cryst. Solids 382, 74 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Magdy A. Ibrahim, Shimaa Abdel Halim, N. Roushdy, A.A.M. Farag, Nasser M. El-Gohary, Optik 166, 294 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Abdelghan, H.M. Zeyada, H.A. ElBatal, R.E. Fetouh, Silicon 9, 347 (2017)CrossRefGoogle Scholar
  19. 19.
    A.K. Roy, A. Singh, K. Kumari, K.A. Nath, A. Prasad, K. Prasad, ISRN Ceramics 2012, 854831 (2012)CrossRefGoogle Scholar
  20. 20.
    M.M. El-Nahass, A.M. Farid, A.A. Atta, Opt. Quantum Electron. 48, 458 (2016)CrossRefGoogle Scholar
  21. 21.
    M.M. El-Nahass, A.A. Atta, E.F.M. El-Zaidia, A.A.M. Farag, A.H. Ammar, Mater. Chem. Phys. 143, 490 (2014)CrossRefGoogle Scholar
  22. 22.
    M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Physica B 403, 2331 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    I.S. Yahia, Acta Phys. Pol. A 125, 1167 (2014)CrossRefGoogle Scholar
  24. 24.
    M.M. El-Nahass, H. Kamal, M.H. Elshorbagy, K. Abdel-Hady, Org. Electron. 14, 2847 (2013)CrossRefGoogle Scholar
  25. 25.
    M.M. EL-Nahass, E.F.M. EL-Zaidia, A.A.A. Darwish, G.F. Salem, J. Electron. Mater. 46, 1093 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    N. Mehta, D. Kumar, S. Kumar, A. Kumar, Chalcogenide Lett. 2, 103 (2005)Google Scholar
  27. 27.
    S. Murugavel, M. Upadhyay, J. Indian Inst. Sci. 91, 303 (2011)Google Scholar
  28. 28.
    M.E. Azim-Araghi, S. Abbasi, J. Optoelectron. Adv. Mater. 12, 1777 (2010)Google Scholar
  29. 29.
    N.A. El-Ghamaz, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, Sh.M. Morgan, Mater. Res. Bull. 65, 293 (2015)CrossRefGoogle Scholar
  30. 30.
    K.P. Priyanka, Sunny Joseph, Smitha Thankachan, E.M. Mohammed, Thomas Varghese, J. Basic Appl. Phys. 2, 4 (2013)Google Scholar
  31. 31.
    H. Naceue, A. Megriche, M. EL-Maaoui, Oriental J. Chem. 29, 937 (2013)CrossRefGoogle Scholar
  32. 32.
    H.M. El-Mallah, Acta Phys. Pol. A 122, 174 (2012)CrossRefGoogle Scholar
  33. 33.
    M.M. Elkholy, J. Mater. Sci.: Mater. Electron. 5, 157 (1994)Google Scholar
  34. 34.
    M.A. Batal, G. Nashed, Fares Haj Jneed, Lat. Am. J. Phys. Educ. 6, 311 (2012)Google Scholar
  35. 35.
    N. Shukla, V. Kumar, D.K. Dwivedi, J. Non-Oxide Glass. 8, 47 (2016)Google Scholar
  36. 36.
    J.M. Stevels, in Handbuch der Physik, edited by S. Flügge, Vol. 20 (Springer, Berlin, 1957) p. 350Google Scholar
  37. 37.
    M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Physica B 403, 2331 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    T. Das, B.K. Das, S.K.S. Parashar, K. Parashar, Bull. Mater. Sci. 40, 247 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Prasad, A. Basu, J. Adv. Ceram. 2, 71 (2013)CrossRefGoogle Scholar
  40. 40.
    S.S. Yadava, L. Singh, S. Sharma, K.D. Mandal, N.B. Singh, RSC Adv. 6, 68247 (2016)CrossRefGoogle Scholar
  41. 41.
    S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Express Polym. Lett. 4, 300 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations