Skip to main content
Log in

UV physics and the speed of sound during inflation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We consider inflation as an effective field theory and study the effects of the addition to the Lagrangian of irrelevant operators with higher powers of first derivatives on its dynamics and observables. We find that significant deviations from the two-derivative dynamics are possible within the regime of validity of the effective field theory. Focusing on monomial potentials we show that the main effect of the terms under consideration is to reduce the speed of sound thereby reducing the tensor fraction, while having little impact on the scalar tilt. Crucially, these effects can arise even when the UV cut-off is well above the inflationary Hubble parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ostrogradsky, Mem. Acad. St. Petersbourg 6, 385 (1850)

    Google Scholar 

  2. J.Z. Simon, Phys. Rev. D 41, 3720 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. X. Jaen, J. Llosa, A. Molina, Phys. Rev. D 34, 2302 (1986)

    Article  ADS  Google Scholar 

  4. I. Antoniadis, E. Dudas, D.M. Ghilencea, JHEP 03, 045 (2008) arXiv:0708.0383 [hep-th]

    Article  ADS  Google Scholar 

  5. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999) hep-th/9904075

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999) hep-th/9904176

    Article  ADS  MathSciNet  Google Scholar 

  7. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A20 (2016) arXiv:1502.02114 [astro-ph.CO]

    Article  Google Scholar 

  8. I. Zavala, Phys. Rev. D 91, 063005 (2015) arXiv:1412.3732 [astro-ph.CO]

    Article  ADS  Google Scholar 

  9. S. Weinberg, Phys. Rev. D 77, 123541 (2008) arXiv:0804.4291 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. C.P. Burgess, M.W. Horbatsch, S.P. Patil, JHEP 01, 133 (2013) arXiv:1209.5701 [hep-th]

    Article  ADS  Google Scholar 

  11. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, JHEP 03, 014 (2008) arXiv:0709.0293 [hep-th]

    Article  ADS  Google Scholar 

  12. A.J. Tolley, M. Wyman, Phys. Rev. D 81, 043502 (2010) arXiv:0910.1853 [hep-th]

    Article  ADS  Google Scholar 

  13. A. Achucarro, J.O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, JHEP 05, 066 (2012) arXiv:1201.6342 [hep-th]

    Article  ADS  Google Scholar 

  14. A. Achucarro, J.O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Phys. Rev. D 84, 043502 (2011) arXiv:1005.3848 [hep-th]

    Article  ADS  Google Scholar 

  15. A. Achucarro, J.O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, JCAP 01, 030 (2011) arXiv:1010.3693 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Achucarro, V. Atal, Y. Welling, JCAP 07, 008 (2015) arXiv:1503.07486 [astro-ph.CO]

    Article  ADS  Google Scholar 

  17. G. Shiu, I. Wasserman, Phys. Lett. B 536, 1 (2002) hep-th/0203113

    Article  ADS  Google Scholar 

  18. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A17 (2016) arXiv:1502.01592 [astro-ph.CO]

    Article  Google Scholar 

  19. C. Grosse-Knetter, Phys. Rev. D 49, 6709 (1994) hep-ph/9306321

    Article  ADS  MathSciNet  Google Scholar 

  20. J.O. Gong, M.S. Seo, S. Sypsas, JCAP 03, 009 (2015) arXiv:1407.8268 [hep-th]

    Article  ADS  Google Scholar 

  21. C.P. Burgess, Ann. Rev. Nucl. Part. Sci. 57, 329 (2007) hep-th/0701053

    Article  ADS  Google Scholar 

  22. E. Elizalde, A.G. Zheksenaev, S.D. Odintsov, I.L. Shapiro, Phys. Lett. B 328, 297 (1994) hep-th/9402154

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Alishahiha, E. Silverstein, D. Tong, Phys. Rev. D 70, 123505 (2004) hep-th/0404084

    Article  ADS  Google Scholar 

  24. N.K. Stein, W.H. Kinney, JCAP 04, 006 (2017) arXiv:1609.08959 [astro-ph.CO]

    Article  ADS  Google Scholar 

  25. S. Bielleman, L.E. Ibanez, F.G. Pedro, I. Valenzuela, C. Wieck, JHEP 02, 073 (2017) arXiv:1611.07084 [hep-th]

    Article  ADS  Google Scholar 

  26. S. Bielleman, L.E. Ibanez, F.G. Pedro, I. Valenzuela, C. Wieck, JHEP 05, 095 (2016) arXiv:1602.00699 [hep-th]

    Article  ADS  Google Scholar 

  27. S. Bielleman, L.E. Ibanez, F.G. Pedro, I. Valenzuela, JHEP 01, 128 (2016) arXiv:1505.00221 [hep-th]

    Article  ADS  Google Scholar 

  28. L.E. Ibanez, F. Marchesano, I. Valenzuela, JHEP 01, 128 (2015) arXiv:1411.5380 [hep-th]

    Article  ADS  Google Scholar 

  29. X. Chen, M.x. Huang, S. Kachru, G. Shiu, JCAP 01, 002 (2007) hep-th/0605045

    Article  ADS  Google Scholar 

  30. L. Senatore, K.M. Smith, M. Zaldarriaga, JCAP 01, 028 (2010) arXiv:0905.3746 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. D. Ciupke, J. Louis, A. Westphal, JHEP 10, 094 (2015) arXiv:1505.03092 [hep-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco G. Pedro.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedro, F.G. UV physics and the speed of sound during inflation. Eur. Phys. J. Plus 134, 194 (2019). https://doi.org/10.1140/epjp/i2019-12529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12529-x

Navigation