Effect of poling direction and porosity on piezoelectric figures of merit: A numerical study

  • Raj Kiran
  • Anuruddh Kumar
  • Rajeev Kumar
  • Rahul VaishEmail author
Regular Article


Piezoelectric materials are at front of scientific research when it comes to sensing, actuation and energy harvesting from smart materials and structures. Crucial to such materials is their output power and performance in terms of figure of merit (FOM). In the present paper, we have compared the effect of two approaches, namely, introducing porosity and poling tuning on different figures of merit. Here, two material systems, 0.3BaTiO3-0.7NaNbO3 (BT-NNb) and Pb[ZrxTi1-x]O3 (PZT-5A), have been considered and the effective piezoelectric properties for different porosity levels (upto 25% volume fraction) and at different poling orientations were computed using representative volume element (RVE). It was observed that for BT-NNb the effective properties get optimised at a given poling orientation unlike in PZT-5A. For BT-NNb, without poling tuning, the maximum change in FOM31, FOM33 and FOMh (associated with transverse (d31), longitudinal (d33) and hydrostatic (dh) piezoelectric strain coefficients) was found to be 14.3%, 14.1% and 14.4% for 25% porous (by volume) system. On the other hand, for the same system, at optimum poling orientation all the FOMs were found to be ∼ 1000 times higher than their corresponding initial values. However, in PZT-5A, no optimum poling orientation was observed and thus it was concluded that FOMs can only be improved by introducing porosity in the system.


  1. 1.
    W.P. Mason, J. Acoust. Soc. Am. 70, 1561 (1981)CrossRefGoogle Scholar
  2. 2.
    J. Sirohi, I. Chopra, J. Intell. Mater. Syst. Struct. 11, 246 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Schuster, An Introduction to the Theory of Electricity (1877)Google Scholar
  4. 4.
    K.S. Ramadan, D. Sameoto, S. Evoy, Smart Mater. Struct. 23, 033001 (2014)CrossRefGoogle Scholar
  5. 5.
    J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2, 257 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, V.S. Chauhan, S.K. Sharma, R. Kumar, Ferroelectrics 510, 170 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)CrossRefGoogle Scholar
  8. 8.
    E.F. Crawley, J. De Luis, AIAA J. 25, 1373 (1987)CrossRefGoogle Scholar
  9. 9.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  10. 10.
    P. Bisegna, R. Luciano, J. Mech. Phys. Solids 45, 1329 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L.J. Walpole, Math. Proc. Cambridge Philos. Soc. 81, 283 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Bisegna, R. Luciano, J. Mech. Phys. Solids 44, 583 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.P. Skinner, R.E. Newnham, L.E. Cross, Mater. Res. Bull. 13, 599 (1978)CrossRefGoogle Scholar
  14. 14.
    K. Nagata, H. Igarashi, K. Okazaki, R.C. Bradt, Jpn. J. Appl. Phys. 19, L37 (1980)CrossRefGoogle Scholar
  15. 15.
    K. Hikita, K. Yamada, M. Nishioka, M. Ono, Ferroelectrics 49, 265 (1983)CrossRefGoogle Scholar
  16. 16.
    R. Guo, C.-A. Wang, A. Yang, J. Eur. Ceram. Soc. 31, 605 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Arai, K. Ayusawa, H. Sato, T. Miyata, K. Kawamura, K. Kobayashi, Jpn. J. Appl. Phys. 30, 2253 (1991)CrossRefGoogle Scholar
  18. 18.
    S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Craciun, G. Guidarelli, J. Acoust. Soc. Am. 106, 733 (1999)CrossRefGoogle Scholar
  19. 19.
    H. Kara, R. Ramesh, R. Stevens, C.R. Bowen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 289 (2003)CrossRefGoogle Scholar
  20. 20.
    J.I. Roscow, J. Taylor, C.R. Bowen, Ferroelectrics 498, 40 (2016)CrossRefGoogle Scholar
  21. 21.
    J.I. Roscow, R.W.C. Lewis, J. Taylor, C.R. Bowen, Acta Mater. 128, 207 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5, 6569 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Kiran, A. Kumar, R. Kumar, R. Vaish, Scr. Mater. 151, 76 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003)CrossRefGoogle Scholar
  25. 25.
    H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, J. Bravo-Castillero, R. Guinovart-Diaz, F.J. Sabina, G.A. Maugin, Smart Mater. Struct. 15, 451 (2006)CrossRefGoogle Scholar
  26. 26.
    Z. Xia, Y. Zhang, F. Ellyin, Int. J. Solids Struct. 40, 1907 (2003)CrossRefGoogle Scholar
  27. 27.
    C. Poizat, M. Sester, Comput. Mater. Sci. 16, 89 (1999)CrossRefGoogle Scholar
  28. 28.
    P.M. Suquet, Elastic Perfectly Plastic Constituents, in Homogenization Techniques for Composite Media (Springer, 1987) pp. 245--278Google Scholar
  29. 29.
    N.S. Bakhvalov, G. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials (Springer Science & Business Media, 2012)Google Scholar
  30. 30.
    A. Agbossou, C. Richard, Y. Vigier, Compos. Sci. Technol. 63, 871 (2003)CrossRefGoogle Scholar
  31. 31.
    U. Galvanetto, M.H. Aliabadi, Multiscale Modeling in Solid Mechanics: Computational Approaches (World Scientific, 2010)Google Scholar
  32. 32.
    J.A. Eiras, R.B.Z. Gerbasi, J.M. Rosso, D.M. Silva, L.F. Cótica, I.A. Santos, C.A. Souza, M.H. Lente, Materials 9, 179 (2016)CrossRefGoogle Scholar
  33. 33.
    Comsol Multiphysics Materials Database v4.3 in Materials Database (2012)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Raj Kiran
    • 1
  • Anuruddh Kumar
    • 1
  • Rajeev Kumar
    • 1
  • Rahul Vaish
    • 1
    Email author
  1. 1.School of EngineeringIndian Institute of TechnologyMandiIndia

Personalised recommendations