Skip to main content

Advertisement

Log in

Spectral functions of nuclear matter using self-consistent Green’s function approach based on three-body force

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A self-consistent Green’s Function approach is used to study the influence of short-range correlations beyond the mean-field approach of nuclear matter. The ladder equation, including both particle-particle and hole-hole propagation, is solved in nuclear matter for a realistic interaction derived from the CD-Bonn potential. The hole-hole interaction is used to calculate the spectral functions that describe the distribution of holes below Fermi level. The nucleon spectral functions are calculated from the momentum- and energy-dependent self-energy. For comparison, the calculations are investigated by including nuclear three-body force. These spectral functions directly reflect the effects of the nucleon-nucleon correlations and can be explored by the analysis of nucleon knock-out experiments like \( ({\rm e, e' p})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Migdal, Theory of Finite Systems (Wiley, New York, 1967)

  2. B.E. Vonderfecht, W.H. Dickhoff, A. Polls, A. Ramos, Nucl. Phys. A 555, 1 (1993)

    Article  ADS  Google Scholar 

  3. T. Alm, G. Röpke, A. Schnell, N.H. Kwong, H.S. Köhler, Phys. Rev. C 53, 2181 (1996)

    Article  ADS  Google Scholar 

  4. P. B\.ozek, Nucl. Phys. A 657, 187 (1999)

    Article  ADS  Google Scholar 

  5. M. Baldo, I. Bombaci, U. Lombardo, Phys. Lett. B 283, 8 (1992)

    Article  ADS  Google Scholar 

  6. T. Alm, B.L. Friman, G. Röpke, H. Schulz, Nucl. Phys. A 551, 45 (1993)

    Article  ADS  Google Scholar 

  7. O. Elgarøy, L. Engvik, M. Hjorth-Jensen, E. Osnes, Phys. Rev. C 57, R1069 (1998)

    Article  ADS  Google Scholar 

  8. Y. Dewulf, D. Van Neck, M. Waroquier, Phys. Lett. B 510, 89 (2001)

    Article  ADS  Google Scholar 

  9. T. Frick, H. Müther, Phys. Rev. C 68, 034310 (2003)

    Article  ADS  Google Scholar 

  10. K.S.A. Hassaneen, Phys. Res. Int. 2013, 415605 (2013)

    Article  Google Scholar 

  11. H. Müther, W.H. Dickhoff, Phys. Rev. C 72, 054313 (2005)

    Article  ADS  Google Scholar 

  12. E. Schiller, H. Müther, P. Czerski, Phys. Rev. C 59, 2934 (1999) 60

    Article  ADS  Google Scholar 

  13. Khaled Hassaneen, Hesham Mansour, J. Phys. Soc. Jpn. 86, 024201 (2017)

    Article  Google Scholar 

  14. Khaled S.A. Hassaneen, Eur. Phys. J. A 53, 9 (2017)

    Article  ADS  Google Scholar 

  15. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996)

    Article  ADS  Google Scholar 

  16. N.M. Hugenholz, L. Van Hove, Physica 24, 363 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Gad, K.S.A. Hassaneen, Nucl. Phys. A 793, 67 (2007)

    Article  ADS  Google Scholar 

  18. K.S.A. Hassaneen, K. Gad, J. Phys. Soc. Jpn. 77, 084201 (2008)

    Article  ADS  Google Scholar 

  19. H. Mansour, Kh. Gad, K.S.A. Hassaneen, Prog. Theor. Phys. 123, 687 (2010)

    Article  ADS  Google Scholar 

  20. T. Frick, K.S.A. Hassaneen, D. Rohe, H. Müther, Phys. Rev. C 70, 024309 (2004)

    Article  ADS  Google Scholar 

  21. K.S.A. Hassaneen, H. Müther, Phys. Rev. C 70, 054308 (2004)

    Article  ADS  Google Scholar 

  22. Pei Wang, Sheng-Xin Gan, Peng Yin, Wei Zuo, Phys. Rev. C 87, 014328 (2013)

    Article  ADS  Google Scholar 

  23. A. Carbone, A. Polls, A. Rios, Phys. Rev. C 88, 044302 (2013)

    Article  ADS  Google Scholar 

  24. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)

    Article  ADS  Google Scholar 

  25. T. Frick, K. Gad, H. Müther, P. Czerski, Phys. Rev. C 65, 034321 (2002)

    Article  ADS  Google Scholar 

  26. P. Grange, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987)

    Article  ADS  Google Scholar 

  27. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  28. J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983)

    Article  ADS  Google Scholar 

  29. M. Baldo, private communication

  30. P. Grangé, A. Lejeune, M. Martzolff, J.F. Mathiot, Phys. Rev. C 40, 1040 (1989)

    Article  ADS  Google Scholar 

  31. Pei Wang, Wei Zuo, Phys. Rev. C 89, 054319 (2014)

    Article  ADS  Google Scholar 

  32. V. Somà, P. Bożek, Phys. Rev. C 78, 054003 (2008)

    Article  ADS  Google Scholar 

  33. A. Rios, A. Carbone, A. Polls, Phys. Rev. C 96, 014003 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled S. A. Hassaneen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassaneen, K.S.A. Spectral functions of nuclear matter using self-consistent Green’s function approach based on three-body force. Eur. Phys. J. Plus 133, 484 (2018). https://doi.org/10.1140/epjp/i2018-12413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12413-3

Navigation